Skip to main content
Log in

Preparation of mPEG-b-PLA/TM-2 Micelle Lyophilized Products by Mixed Lyoprotectors and Antitumor Effect In Vivo

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of this study was to encapsulate the poorly water-soluble drug TM-2 into polymer micelles using mPEG2k-b-PLA2.4k to increase its aqueous solubility and improve its therapeutic effect for liver cancer. Furthermore, in order to achieve long-term storage, the micelle solution was successfully freeze-dried. This study theoretically clarified the possibility of enhancing the water solubility of TM-2 using mPEG2k-b-PLA2.4k micelles as well as the protective effects of mixed lyoprotectants. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were performed, which showed that the drug has a good affinity with the polymer (χ = 0.489) according to Flory-Huggins theory and that lyoprotectants reduced the crystallinity of PEG in mPEG2k-b-PLA2.4k and played a space-protective role in the lyophilization process. In vivo experiments showed that micellization could improve the drug bioavailability and give a high therapeutic effect with a tumor inhibition rate of 84.5% under the tolerated dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tan KT, Li S, Li YR, Cheng SL, Lin SH, Tung YT. Synergistic anticancer effect of a combination of paclitaxel and 5-demethylnobiletin against lung cancer cell line in vitro and in vivo. Appl Biochem Biotechnol. 2019;187:1328–43.

    Article  CAS  Google Scholar 

  2. Kim YJ, Keam B, Ock CY, Song S, Kim M, Kim SH, et al. A phase II study of pembrolizumab and paclitaxel in patients with relapsed or refractory small-cell lung cancer. Lung Cancer. 2019;136:122–8.

    Article  Google Scholar 

  3. Li X, Kwon H. Efficacy and safety of nanoparticle albumin-bound paclitaxel in elderly patients with metastatic breast cancer: a meta-analysis. J Clin Med. 2019;8.

  4. De Clercq K, Xie F, De Wever O, Descamps B, Hoorens A, Vermeulen A, et al. Preclinical evaluation of local prolonged release of paclitaxel from gelatin microspheres for the prevention of recurrence of peritoneal carcinomatosis in advanced ovarian cancer. Sci Rep. 2019;9:14881.

    Article  Google Scholar 

  5. Leung JC, Cassimeris L. Reorganization of paclitaxel-stabilized microtubule arrays at mitotic entry: roles of depolymerizing kinesins and severing proteins. Cancer Biol Ther. 2019;20:1337–47.

    Article  CAS  Google Scholar 

  6. Cao YN, Zheng LL, Wang D, Liang XX, Gao F, Zhou XL. Recent advances in microtubule-stabilizing agents. Eur J Med Chem. 2018;143:806–28.

    Article  CAS  Google Scholar 

  7. Wang Q, Liu Y, Pu C, Zhang H, Tan X, Gou J, et al. Drug-polymer interaction, pharmacokinetics and antitumor effect of PEG-PLA/taxane derivative TM-2 micelles for intravenous drug delivery. Pharm Res. 2018;35:208.

    Article  Google Scholar 

  8. Ezrahi S, Aserin A, Garti N. Basic principles of drug delivery systems – the case of paclitaxel. Adv Colloid Interf Sci. 2019;263:95–130.

    Article  CAS  Google Scholar 

  9. Wang Y, Li X, Wang L, Xu Y, Cheng X, Wei P. Formulation and pharmacokinetic evaluation of a paclitaxel nanosuspension for intravenous delivery. Int J Nanomedicine. 2011;6:1497–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Campos FC, Victorino VJ, Martins-Pinge MC, Cecchini AL, Panis C, Cecchini R. Systemic toxicity induced by paclitaxel in vivo is associated with the solvent cremophor EL through oxidative stress-driven mechanisms. Food Chem Toxicol. 2014;68:78–86.

    Article  CAS  Google Scholar 

  11. Yang ZL, Li XR, Yang KW, Liu Y. Amphotericin B-loaded poly(ethylene glycol)-poly(lactide) micelles: preparation, freeze-drying, and in vitro release. J Biomed Mater Res A. 2008;85:539–46.

    Article  Google Scholar 

  12. Li C, Shen Y, Sun C, Cheraga N, Tu J. Immunosafety and chronic toxicity evaluation of monomethoxypoly(ethylene glycol)-b-poly(lactic acid) polymer micelles for paclitaxel delivery. Drug Deliv. 2016;23:888–95.

    PubMed  Google Scholar 

  13. Doddapaneni BS, Al-Fatease AM, Rao DA, Alani AWG. Dual-drug loaded micelle for combinatorial therapy targeting HIF and mTOR signaling pathways for ovarian cancer treatment. J Control Release. 2019;307:272–81.

    Article  CAS  Google Scholar 

  14. Shi Y, Zhu H, Ren Y, Li K, Tian B, Han J, et al. Preparation of protein-loaded PEG-PLA micelles and the effects of ultrasonication on particle size. Colloid Polym Sci. 2016;295:259–66.

    Article  Google Scholar 

  15. Sagnella SM, McCarroll JA, Kavallaris M. Drug delivery: beyond active tumour targeting. Nanomedicine. 2014;10:1131–7.

    Article  CAS  Google Scholar 

  16. Lakkireddy HR, Bazile D. Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly(lactide(glycolide))-poly(ethylene glycol) nanotechnology as a model: an industrial viewpoint. Adv Drug Deliv Rev. 2016;107:289–332.

    Article  CAS  Google Scholar 

  17. Pan L, Zhou J, Ju F, Zhu H. Intranasal delivery of alpha-asarone to the brain with lactoferrin-modified mPEG-PLA nanoparticles prepared by premix membrane emulsification. Drug Deliv Transl Res. 2018;8:83–96.

    Article  CAS  Google Scholar 

  18. Zhou W, Li C, Wang Z, Zhang W, Liu J. Factors affecting the stability of drug-loaded polymeric micelles and strategies for improvement. J Nanopart Res. 2016;18.

  19. Wang S, Ye F, Wei F, Zhao G. Spray-drying of curcumin-loaded octenylsuccinated corn dextrin micelles stabilized with maltodextrin. Powder Technol. 2017;307:56–62.

    Article  CAS  Google Scholar 

  20. Esparza K, Onyuksel H. Development of co-solvent freeze-drying method for the encapsulation of water-insoluble thiostrepton in sterically stabilized micelles. Int J Pharm. 2019;556:21–9.

    Article  CAS  Google Scholar 

  21. Anhorn MG, Mahler HC, Langer K. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Int J Pharm. 2008;363:162–9.

    Article  CAS  Google Scholar 

  22. Sun Y, Tao J, Zhang GG, Yu L. Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J Pharm Sci. 2010;99:4023–31.

    Article  CAS  Google Scholar 

  23. Armstrong TKC, Girouard LG, Anchordoquy TJ. Effects of PEGylation on the preservation of cationic lipid/DNA complexes during freeze-thawing and lyophilization. J Pharm Sci-Us. 2002;91:2549–58.

    Article  CAS  Google Scholar 

  24. Passot S, Fonseca F, Alarcon-Lorca M, Rolland D, Marin M. Physical characterisation of formulations for the development of two stable freeze-dried proteins during both dried and liquid storage. Eur J Pharm Biopharm. 2005;60:335–48.

    Article  CAS  Google Scholar 

  25. Guo C, Chen Y, Zhu J, Wang J, Xu Y, Luan H, et al. Preparation, optimization of intravenous ZL-004 nanosuspensions by the precipitation method, effect of particle size on in vivo pharmacokinetics and tissue distribution. J Drug Deliv Sci Technol. 2019;50:313–20.

    Article  CAS  Google Scholar 

  26. D'Addio SM, Kafka C, Akbulut M, Beattie P, Saad W, Herrera M, et al. Novel method for concentrating and drying polymeric nanoparticles: hydrogen bonding coacervate precipitation. Mol Pharm. 2010;7:557–64.

    Article  CAS  Google Scholar 

  27. Di Tommaso C, Como C, Gurny R, Moller M. Investigations on the lyophilisation of MPEG-hexPLA micelle based pharmaceutical formulations. Eur J Pharm Sci. 2010;40:38–47.

    Article  Google Scholar 

  28. Puapermpoonsiri U, Ford SJ, van der Walle CF. Stabilization of bacteriophage during freeze drying. Int J Pharm. 2010;389:168–75.

    Article  CAS  Google Scholar 

  29. Ojha T, Pathak V, Drude N, Weiler M, Rommel D, Rutten S, et al. Shelf-life evaluation and lyophilization of PBCA-based polymeric microbubbles. Pharmaceutics. 2019;11.

  30. Bhatnagar BS, Martin SM, Teagarden DL, Shalaev EY, Suryanarayanan R. Investigation of PEG crystallization in frozen PEG-sucrose-water solutions. I. Characterization of the nonequilibrium behavior during freeze-thawing. J Pharm Sci. 2010;99:2609–19.

    Article  CAS  Google Scholar 

  31. Donini C, Robinson DN, Colombo P, Giordano F, Peppas NA. Preparation of poly(methacrylic acid-g-poly(ethylene glycol)) nanospheres from methacrylic monomers for pharmaceutical applications. Int J Pharm. 2002;245:83–91.

    Article  CAS  Google Scholar 

  32. Caron V, Hu Y, Tajber L, Erxleben A, Corrigan OI, McArdle P, et al. Amorphous solid dispersions of sulfonamide/Soluplus(R) and sulfonamide/PVP prepared by ball milling. AAPS PharmSciTech. 2013;14:464–74.

    Article  CAS  Google Scholar 

  33. Moseson DE, Taylor LS. The application of temperature-composition phase diagrams for hot melt extrusion processing of amorphous solid dispersions to prevent residual crystallinity. Int J Pharm. 2018;553:454–66.

    Article  CAS  Google Scholar 

  34. Li Y, He H, Wang Q, Tang X. Preparation, stability and pharmacokinetics evaluation of lipid microspheres loading a promising antitumor candidate, Timataxel. Asian J Pharm Sci. 2016;11:771–9.

    Article  Google Scholar 

  35. Chu B, Shi S, Li X, Hu L, Shi L, Zhang H, et al. Preparation and evaluation of teniposide-loaded polymeric micelles for breast cancer therapy. Int J Pharm. 2016;513:118–29.

    Article  CAS  Google Scholar 

  36. Marsac PJ, Li T, Taylor LS. Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res. 2009;26:139–51.

    Article  CAS  Google Scholar 

  37. Chen Y, Liu C, Chen Z, Su C, Hageman M, Hussain M, et al. Drug-polymer-water interaction and its implication for the dissolution performance of amorphous solid dispersions. Mol Pharm. 2015;12:576–89.

    Article  CAS  Google Scholar 

  38. Tian Y, Qian K, Jacobs E, Amstad E, Jones DS, Stella L, et al. The investigation of Flory-Huggins interaction parameters for amorphous solid dispersion across the entire temperature and composition range. Pharmaceutics. 2019;11.

  39. Bhatnagar BS, Martin SM, Teagarden DL, Shalaev EY, Suryanarayanan R. Investigation of PEG crystallization in frozen PEG-sucrose-water solutions: II. Characterization of the equilibrium behavior during freeze-thawing. J Pharm Sci. 2010;99:4510–24.

    Article  CAS  Google Scholar 

  40. Santos JHPM, Carretero G, Ventura SPM, Converti A, Rangel-Yagui CO. PEGylation as an efficient tool to enhance cytochrome c thermostability: a kinetic and thermodynamic study. J Mater Chem B. 2019;7:4432–9.

    Article  CAS  Google Scholar 

  41. He ZJ, Wan XM, Schulz A, Bludau H, Dobrovolskaia MA, Stern ST, et al. A high capacity polymeric micelle of paclitaxel: implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials. 2016;101:296–309.

    Article  CAS  Google Scholar 

  42. Miao L, Su J, Zhuo X, Luo L, Kong Y, Gou J, et al. mPEG5k- b-PLGA2k/PCL3.4k/MCT mixed micelles as carriers of disulfiram for improving plasma stability and antitumor effect in vivo. Mol Pharm. 2018;15:1556–64.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Mega-Project for Innovative Drugs [grant number 2019ZX09721001], Liaoning Revitalization Talents Program [grant number XLYC1908031], and the Project of Liaoning Provincial Department of Education [grant number 2019LQN07].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Tang.

Ethics declarations

All animal experiments were conducted according to the Guiding Principles in Shenyang Pharmaceutical University. The experiments were approved by the ethical committee of Shenyang Pharmaceutical University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, Y., Wang, N. et al. Preparation of mPEG-b-PLA/TM-2 Micelle Lyophilized Products by Mixed Lyoprotectors and Antitumor Effect In Vivo. AAPS PharmSciTech 22, 38 (2021). https://doi.org/10.1208/s12249-020-01885-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01885-9

KEY WORDS

Navigation