Skip to main content
Log in

Porous Core/Dense Shell PLA Microspheres Embedded with High Drug Loading of Bupivacaine Crystals for Injectable Prolonged Release

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Objective of the study was to design an injectable microsphere preparation with high drug loading of bupivacaine for prolonged release and local anesthetic. PLA or PLGA was used as the biodegradable matrix material to fabricate microspheres with the o/w emulsification-solvent evaporation method. The characterization of bupivacaine microspheres was observed by SEM, DSC, and XRPD. The microsphere preparation and extended drug release, as well as the plasma drug concentration and sciatic nerve blockade after injection of the microsphere formulation to rats were investigated. High drug-loading microspheres of more than 70% were successfully obtained with extended drug release over 5 days in vitro depending on the type of matrix and the feed ratio of drug to polymer. SEM, DSC, and XRPD results verified a novel microsphere structure characterized as the porous core composed of PLA material and form II bupivacaine crystals and dense shell formed of PLA layer. The mechanism that bupivacaine was dissolved inside the microsphere and diffused across the dense shell was suggested for drug release in vitro. The optimized PLA microsphere formulation showed low and steady plasma drug concentration over 5 days and prolonged duration of sensory and motor blockade of sciatic nerve lasted more than 3 days. Results indicated that the porous core-shell structure of PLA microsphere formulation would provide enormous potential as an injectable depot for locally prolonged delivery of bupivacaine and control of postoperative pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bramlett K, Onel E, Viscusi ER, et al. A randomized, double-blind, dose-ranging study comparing wound infiltration of DepoFoam bupivacaine, an extended-release liposomal bupivacaine, to bupivacaine HCl for postsurgical analgesia in total knee arthroplasty. Knee. 2012;19(5):530–6.

    Article  Google Scholar 

  2. Cusack SL, Jaros M, Kuss M, Minkowitz HS, Winkle P, Hemsen L. Clinical evaluation of XaraColl((R)), a bupivacaine-collagen implant, for postoperative analgesia in two multicenter, randomized, double-blind, placebo-controlled pilot studies. J Pain Res. 2012;5:217–25.

    Article  CAS  Google Scholar 

  3. Ellis D, Verity N, Lissin D, et al. Treatment of postoperative pain in shoulder surgery with SABER-Bupivacaine. J Pain. 2013;14(4):S84.

    Article  Google Scholar 

  4. Chen PC, Park YJ, Chang LC, Kohane DS, Bartlett RH, Langer R, et al. Injectable microparticle-gel system for prolonged and localized lidocaine release. I. In vitro characterization. J Biomed Mater Res A. 2004;70(3):412–9.

    Article  Google Scholar 

  5. P C Chen, Kohane D S, Park Y J, Bartlett R.H., Langer R., Yang V.C., Injectable microparticle-gel system for prolonged and localized lidocaine release. II. In vivo anesthetic effects. J Biomed Mater Res A, 2004. 70(3): p. 459–466.

  6. L L., J. Q, B. S, et al., Intrathecal dexmedetomidine can decrease the 95% effective dose of bupivacaine in spinal anesthesia for cesarean section: a prospective, double-blinded, randomized study. Medicine (Baltimore), 2019. 98(9).

  7. Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010;7(4):429–44.

    Article  CAS  Google Scholar 

  8. R Rc., Pj. S, Wg. C, et al., Handbook of Pharmaceutical Excipients 7ed. 2012, London : Pharmaceutical Press.

  9. Tian L, Gao J, Yang Z, et al. Tamibarotene-loaded PLGA microspheres for intratumoral injection administration: preparation and evaluation. AAPS PharmSciTech. 2018;19(1):275–83.

    Article  CAS  Google Scholar 

  10. Di W, Czarny RS, Fletcher NA, et al. Comparative study of poly (epsilon-Caprolactone) and poly(lactic-co-glycolic acid)-based nanofiber scaffolds for pH-sensing. Pharm Res. 2016;33(10):2433–44.

    Article  CAS  Google Scholar 

  11. Xu Y, Kim CS, Saylor DM, et al. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: a review of experiments and theories. J Biomed Mater Res B Appl Biomater. 2017;105(6):1692–716.

    Article  CAS  Google Scholar 

  12. Park K, Skidmore S, Hadar J, Garner J, Park H, Otte A, et al. Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. J Control Release. 2019;304:125–34.

    Article  CAS  Google Scholar 

  13. Li W, He B, Dai W, et al. Evaluations of therapeutic efficacy of intravitreal injected polylactic-glycolic acid microspheres loaded with triamcinolone acetonide on a rabbit model of uveitis. Int Ophthalmol. 2014;34(3):465–76.

    Article  Google Scholar 

  14. Schwendeman SP, Shah RB, Bailey BA, Schwendeman AS. Injectable controlled release depots for large molecules. J Control Release. 2014;190:240–53.

    Article  CAS  Google Scholar 

  15. Wang JW, Xu JH, J. L. Administration of cucurbitacin PLGA microspheres incorporated in in situ-forming SAIB depots. J Pharm Sci. 2015;105(1):205–11.

    Article  Google Scholar 

  16. Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev. 2013;65(1):104–20.

    Article  CAS  Google Scholar 

  17. S Yy. and Pl. M, An updated review of its use in type 2 diabetes mellitus. Drugs, 2015. 75(10): p. 1141–1152.

  18. Rodriguez Villanueva J, Bravo-Osuna I, Herrero-Vanrell R, et al. Optimising the controlled release of dexamethasone from a new generation of PLGA-based microspheres intended for intravitreal administration. Eur J Pharm Sci. 2016;92:287–97.

    Article  CAS  Google Scholar 

  19. A Rawat, Bhardwaj U, and Burgess D J, Comparison of in vitro-in vivo release of Risperdal((R)) Consta((R)) microspheres. Int J Pharm, 2012. 434(1–2): p. 115–121.

  20. Citrome L. New second-generation long-acting injectable antipsychotics for the treatment of schizophrenia. Expert Rev Neurother. 2013;13(7):767–83.

    Article  CAS  Google Scholar 

  21. Duarte AR, Unal B, Mano JF, et al. Microfluidic production of perfluorocarbon-alginate core-shell microparticles for ultrasound therapeutic applications. Langmuir. 2014;30(41):12391–9.

    Article  CAS  Google Scholar 

  22. Zeng H, Pang X, Wang S, et al. The preparation of core_shell structured microsphere of multi first-line anti-tuberculosis drugs and evaluation of biological safety. Int J Clin Exp Med. 2015;8(6):8398–414.

    PubMed  PubMed Central  Google Scholar 

  23. Xu Q, Chin SE, Wang CH, et al. Mechanism of drug release from double-walled PDLLA(PLGA) microspheres. Biomaterials. 2013;34(15):3902–11.

    Article  CAS  Google Scholar 

  24. Falconi M, Focaroli S, Teti G, et al. Novel PLA microspheres with hydrophilic and bioadhesive surfaces for the controlled delivery of fenretinide. J Microencapsul. 2014;31(1):41–8.

    Article  CAS  Google Scholar 

  25. Cui F, Yang M, Jiang Y, et al. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method. J Control Release. 2003;91(3):375–84.

    Article  CAS  Google Scholar 

  26. Pek YS, Pitukmanorom P, Ying JY. Sustained release of bupivacaine for post-surgical pain relief using core–shell microspheres. J Mater Chem B. 2014;2(46):8194–200.

    Article  CAS  Google Scholar 

  27. Zhang W, Ning C, Xu W, et al. Precision-guided long-acting analgesia by hydrogel-immobilized bupivacaine-loaded microsphere. Theranostics. 2018;8(12):3331–47.

    Article  CAS  Google Scholar 

  28. Bragagni M, Gil-Alegre ME, Mura P, et al. Improving the therapeutic efficacy of prilocaine by PLGA microparticles: preparation, characterization and in vivo evaluation. Int J Pharm. 2018;547(1–2):24–30.

    Article  CAS  Google Scholar 

  29. Okada H. One- and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate. Adv Drug Deliv Rev. 1997;28:43–70.

    Article  CAS  Google Scholar 

  30. Solaric M, Bjartell A, Thyroff-Friesinger U, et al. Testosterone suppression with a unique form of leuprorelin acetate as a solid biodegradable implant in patients with advanced prostate cancer: results from four trials and comparison with the traditional leuprorelin acetate microspheres formulation. Ther Adv Urol. 2017;9(6):127–36.

    Article  CAS  Google Scholar 

  31. Ramazani F, Chen W, Van Nostrum CF, et al. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges. Int J Pharm. 2016;499(1–2):358–67.

    Article  CAS  Google Scholar 

  32. Da Silva GHR, Ribeiro LNM, Mitsutake H, et al. Optimised NLC: a nanotechnological approach to improve the anaesthetic effect of bupivacaine. Int J Pharm. 2017;529(1–2):253–63.

    Article  Google Scholar 

  33. Rodrigues Da Silva GH, Geronimo G, Ribeiro LNM, et al. Injectable in situ forming nanogel: a hybrid Alginate-NLC formulation extends bupivacaine anesthetic effect. Mater Sci Eng C Mater Biol Appl. 2020;109:110608.

    Article  CAS  Google Scholar 

  34. Da HK, Yoo JY, Ko YS. L-Lactide ring-opening polymerization with Tris(acetylacetonate)Titanium(IV) for renewable material. J Nanosci Nanotechnol. 2016;16(5):4539–43.

    Article  Google Scholar 

  35. Kojima R, Yoshida T, Tasaki H, et al. Release mechanisms of tacrolimus-loaded PLGA and PLA microspheres and immunosuppressive effects of the microspheres in a rat heart transplantation model. Int J Pharm. 2015;492(1–2):20–7.

    Article  CAS  Google Scholar 

  36. Bergström JS, Hayman D. An overview of mechanical properties and material modeling of polylactide (PLA) for medical applications. Ann Biomed Eng. 2016;44(2):330–40.

    Article  Google Scholar 

  37. Curley J, Castillo J, Hotz J, Uezono M, Hernandez S, Lim JO, et al. Prolonged regional nerve blockade. Injectable biodegradable bupivacaine polyester microspheres. Anesthesiology. 1996;84:1401–10.

    Article  CAS  Google Scholar 

  38. Rawat A, Bhardwaj U, Burgess DJ. Comparison of in vitro-in vivo release of Risperdal(®) Consta(®) microspheres. Int J Pharm. 2012;434(1–2):115–21.

    Article  CAS  Google Scholar 

  39. Andhariya JV, Shen J, Choi S, Wang Y, Zou Y, Burgess DJ. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres. J Control Release. 2017;255:27–35.

    Article  CAS  Google Scholar 

  40. P L Corre, Este’Be. J P, Cle’Ment. R, et al., Spray-dryed bupivacaine-loaded microspheres in vitro evaluation and biopharmaceutics of bupivacaine following brachial plexus administration in sheep. Int J Pharm, 2002. 238: p. 191–203

  41. Curley J, Castillo J, Hotz J, et al. Prolonged regional nerve blockade. Injectable biodegradable bupivacaine polyester microspheres. Anesthesiology. 1996;84:1401–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Materials support from Dr. Z. Tang at Changchun Institute of Applied Chemistry is gratefully acknowledged.

Funding

This work was financially supported by the Development Supporting Program for Young and Middle-aged Teachers of Shenyang Pharmaceutical University and by the Financially Supported Project to Competitive Industries from Shijiazhuang Development and Reform Commission (No. 2159999).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongdan Yu or Hui Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Bai, Y., Li, X. et al. Porous Core/Dense Shell PLA Microspheres Embedded with High Drug Loading of Bupivacaine Crystals for Injectable Prolonged Release. AAPS PharmSciTech 22, 27 (2021). https://doi.org/10.1208/s12249-020-01878-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01878-8

KEY WORDS

Navigation