Skip to main content

Advertisement

Log in

Design, Characterization, and Application of a pH-Triggered In Situ Gel for Ocular Delivery of Vinpocetine

  • Research Article
  • Theme: Formulation and Delivery of Natural Products
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

We developed a pH-triggered in situ gel (ISG) for ocular delivery of vinpocetine to achieve systemic absorption and a brain-targeting effect in rats. Carbopol acted as a gelling agent combined with hydroxypropyl methylcellulose (HPMC) as a viscosity-enhancing agent. The concentration of Carbopol (0.2%, w/v) and HPMC (1.5%, w/v) was optimized for the ISG system. The optimized formulation was evaluated for studies on release in vitro, rheology, differential scanning calorimetry, ocular irritation, residence time, and in vivo pharmacokinetics. The vinpocetine ISG stayed longer in rabbit eyes than vinpocetine ointment. In vivo pharmacokinetics showed that compared with vinpocetine ointment, vinpocetine ISG attained a peak plasma concentration and area under the curve that was 1–2 folds greater in rat plasma. The Drug Targeting Index (DTI) was 1.06 and 1.26 for vinpocetine ointment and vinpocetine ISG, respectively, after ocular administration, showing that vinpocetine ISG had better distribution in rat brain. These results revealed that a pH-triggered ISG system via ocular administration could be an alternative approach compared with traditional ophthalmic formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feigin VL, Doronin BM, Popova TF, Gribatcheva EV, Tchervov DV. Vinpocetine treatment in acute ischaemic stroke: a pilot single-blind randomized clinical trial. Eur J Neurol. 2001;8(1):81–5.

    CAS  Google Scholar 

  2. Zhuang CY, Li N, Wang M, Zhang XN, Pan WS, Peng JJ, et al. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm. 2010;394(1–2):179–85.

    CAS  Google Scholar 

  3. Xu H, He L, Nie S, Guan J, Zhang X, Yang X, et al. Optimized preparation of vinpocetine proliposomes by a novel method and in vivo evaluation of its pharmacokinetics in New Zealand rabbits. J Control Release. 2009;140(1):61–8.

    CAS  Google Scholar 

  4. Lin C, Chen F, Ye T, Zhang L, Zhang W, Liu D, et al. A novel oral delivery system consisting in “drug-in cyclodextrin-in nanostructured lipid carriers” for poorly water-soluble drug: vinpocetine. Int J Pharm. 2014;465(1–2):90–6.

    CAS  Google Scholar 

  5. Youssef NAHA, Kassem AA, Farid RM, Ismail FA, el-Massik MAE, Boraie NA. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: preparation, characterization and in vivo evaluation. Int J Pharm. 2018;548(1):609–24.

    CAS  Google Scholar 

  6. Langoth N, Kalbe J. Development of a mucoadhesive and permeation enhancing buccal delivery system for PACAP (pituitary adenylate cyclase-activating polypeptide). Int J Pharm. 2005;296(1–2):103–11.

    CAS  Google Scholar 

  7. Oh YK, Park JS, Yoon H. Enhanced mucosal and systemic immune responses to a vaginal vaccine coadministered with RANTES-expressing plasmid DNA using in situ-gelling mucoadhesive delivery system. Vaccine. 2003;21(17–18):1980–8.

    CAS  Google Scholar 

  8. Gupta H, Jain S, Mathur R, Mishra P, Mishra AK, Velpandian T. Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system. Drug Deliv. 2007;14(8):507–15.

    CAS  Google Scholar 

  9. Lee YC, Simamora P, Pinsuwan S. Review on the systemic delivery of insulin via the ocular route. Int J Pharm. 2002;233(1–2):1–18.

    CAS  Google Scholar 

  10. Hornof M, Toropainen E. Cell culture models of the ocular barriers. Eur J Pharm Biopharm. 2005;60(2):207–25.

    CAS  Google Scholar 

  11. Baba S, Mishima H, Okimoto M. Plasma steroid levels and clinical effects after topical application of betamethasone. Graefes Arch Clin Exp Ophthalmol. 1983;220(5):209–14.

    CAS  Google Scholar 

  12. Lahdes K, Kaila T, Huupponen R, et al. Systemic absorption of topically applied ocular atropine. Clin Pharmacol Ther. 1988;44(3):310–4.

    CAS  Google Scholar 

  13. Chiou GC. Improvement of systemic absorption of insulin through eyes with absorption enhancers. J Pharm Sci. 1989;78(10):815–8.

    CAS  Google Scholar 

  14. Li F, Mao D, Dai MM, Zhang HM, Ma Q, Bai LY, et al. Pharmacokinetics of nimodipine after intraocularaAdministration in rats. Zhongguo yi xue ke xue yuan xue bao. 2019;41(1):57–62.

    Google Scholar 

  15. Mao D, Li F, Ma Q, Dai M, Zhang H, Bai L, et al. Intraocular administration of tetramethylpyrazine hydrochloride to rats: a direct delivery pathway for brain targeting? Drug Deliv. 2019;26(1):841–8.

    CAS  Google Scholar 

  16. Ribeiro AM, Figueiras A. Improvements in topical ocular drug delivery systems: hydrogels and contact lenses. J Pharm Pharm Sci. 2015;18(5):683–95.

    CAS  Google Scholar 

  17. Srividya B, Cardoza RM. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Control Release. 2001;73(2–3):205–11.

    CAS  Google Scholar 

  18. Khan S, Warade S. Improvement in ocular bioavailability and prolonged delivery of tobramycin sulfate following topical ophthalmic administration of drug-loaded mucoadhesive microparticles incorporated in thermosensitive in situ gel. J Ocul Pharmacol Ther. 2018;34:287–97.

    CAS  Google Scholar 

  19. Rozier A, Mazuel C, Grove J, Plazonnet B. Gelrite®: a novel, ion-activated, in-situ gelling polymer for ophthalmic vehicles effect on bioavailability of timolol. Int J Pharm. 1989;57(2):163–8.

    CAS  Google Scholar 

  20. Kouchak M, Mahmoodzadeh M. Designing of a pH-triggered Carbopol®/HPMC in situ gel for ocular delivery of dorzolamide HCl: in vitro, in vivo, and ex vivo evaluation. AAPS PharmSciTech. 2019;20(5):210.

    Google Scholar 

  21. Wu H, Liu Z, Peng J, Li L, Li N, Li J, et al. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int J Pharm. 2011;410(1–2):31–40.

    CAS  Google Scholar 

  22. Song S, Tian B, Chen F, Zhang W, Pan Y, Zhang Q, et al. Potentials of proniosomes for improving the oral bioavailability of poorly water-soluble drugs. Drug Dev Ind Pharm. 2015;41(1):51–62.

    CAS  Google Scholar 

  23. Qian S, Wong YC. Development, characterization and application of in situ gel systems for intranasal delivery of tacrine. Int J Pharm. 2014;468(1–2):272–82.

    CAS  Google Scholar 

  24. Ding J, Li J, Mao S. Development and evaluation of vinpocetine inclusion complex for brain targeting. Asian J Pharm Sci. 2015;10(2):114–20.

    Google Scholar 

  25. Morsi NM, Ghorab DM, Badie HA. Bioadhesive brain targeted nasal delivery of an ant ischemic drug. Int J Pharm Biol Arch. 2012;3:1067–76.

    Google Scholar 

  26. Anumolu SS, Singh Y, Gao D, et al. Design and evaluation of novel fast forming pilocarpine-loaded ocular hydrogels for sustained pharmacological response. J Control Release. 2009;137(2):152–9.

    CAS  Google Scholar 

  27. Obiedallah MM, Abdel-Mageed AM. Ocular administration of acetazolamide microsponges in situ gel formulations. Saudi Pharm J. 2018;26(7):909–20.

    Google Scholar 

  28. Ma Q, Dai M, Zhang H, Bai L, He N. Effect of different doses of borneol on the pharmacokinetics of vinpocetine in rat plasma and brain after intraocular administration. Xenobiotica. 2020;50(5):580–7.

    CAS  Google Scholar 

  29. Ding J, Sun Y, Li J, Wang H, Mao S. Enhanced blood-brain barrier transport of vinpocetine by oral delivery of mixed micelles in combination with a message guider. J Drug Target. 2017;25(6):532–40.

    CAS  Google Scholar 

  30. Koevary SB, Lam V. Pharmacokinetics of insulin uptake by ocular tissues and the role of cerebrospinal fluid in optic nerve insulin accumulation following topical insulin application. Optometry. 2004;75(3):183–8.

    Google Scholar 

  31. Sultana Y, Aqil M, Ali A, Zafar S. Evaluation of Carbopol-methyl cellulose based sustained-release ocular delivery system for pefloxacin mesylate using rabbit eye model[J]. Pharm Dev Technol. 2006;11(3):313–9.

    CAS  Google Scholar 

  32. Wu C, Qi H, Chen W, et al. Preparation and evaluation of a Carbopol/HPMC-based in situ gelling ophthalmic system for puerarin. Yakugaku Zasshi. 2007;127(1):183–91.

    CAS  Google Scholar 

  33. Khutoryanskaya OV, Morrison PW, Seilkhanov SK, et al. Hydrogen-bonded complexes and blends of poly(acrylic acid) and methylcellulose: nanoparticles and mucoadhesive films for ocular delivery of riboflavin. Macromol Biosci. 2014;14(2):225–34.

    CAS  Google Scholar 

  34. Dai M, Bai L, Zhang H, Ma Q, Luo R, Lei F, et al. A novel flunarizine hydrochloride-loaded organogel for intraocular drug delivery in situ: design, physicochemical characteristics and inspection. Int J Pharm. 2020;576:119027.

    CAS  Google Scholar 

  35. Singh R, Brumlik C, Vaidya M. A patent review on nanotechnology-based nose-to-brain drug delivery[J]. Recent Pat Nanotechnol. 2020;14.

  36. Li P, Bai J, Dong B, Lu Y, Zhang S, Guo S, et al. In vivo pharmacokinetics of Puerarin via different drug administration routes based on middle cerebral artery occlusion model[J]. Eur J Drug Metab Pharmacokinet. 2017;42(4):719–27.

    CAS  Google Scholar 

  37. Chen G, Zhang X, Yang F, Mu L. Disposition of nanoparticle-based delivery system via inner ear administration[J]. Curr Durg Metab. 2010;11(10):886–97.

    CAS  Google Scholar 

  38. Chen G, Hou S, Hu P, Jin MZ, Liu J. Preliminary study on brain targeted drug delivery via inner ear [J]. Acta Pharm Sin. 2007;42(10):1102–6.

    CAS  Google Scholar 

  39. Mannermaa E, Vellonen KS. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev. 2006;58(11):1136–63.

    CAS  Google Scholar 

  40. Sasaki H, Ichikawa M, Kawakami S, Yamamura K, Nishida K, Nakamura J. In situ ocular absorption of tilisolol through ocular membranes in albino rabbits. J Pharm Sci. 1996;85(9):940–3.

    CAS  Google Scholar 

  41. Christie CD. Insulin absorption by the conjunctival membranes in rabbits. J Clin Invest. 1931;10(4):787–93.

    CAS  Google Scholar 

  42. Koevary SB, Lam V, Patsiopoulos G. Accumulation of porcine insulin in the rat brain and cerebrospinal fluid following ocular application. J Ocul Pharmacol Ther. 2003;19(4):377–84.

    CAS  Google Scholar 

  43. Jingfen S, Zhengshen Z. A novel ocular delivery of brinzolamide based on gellan gum: in vitro and in vivo evaluation[J]. Drug Des Devel Ther. 2018;12:383–9.

    Google Scholar 

Download references

Funding

This study was funded by the Natural Science Foundation in Higher Education of Anhui Province (KJ2019A0454) and the Anhui Province “Special Support Plan” for the Second Batch of Innovative Leading Talents (The Second Batch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning He.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editors: Harsh Chauhan, Abhijit Date and Sonali Dhindwal

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Luo, R., Zhang, H. et al. Design, Characterization, and Application of a pH-Triggered In Situ Gel for Ocular Delivery of Vinpocetine. AAPS PharmSciTech 21, 253 (2020). https://doi.org/10.1208/s12249-020-01791-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01791-0

KEY WORDS

Navigation