Skip to main content
Log in

Fabrication of Fine Puerarin Nanocrystals by Box–Behnken Design to Enhance Intestinal Absorption

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Puerarin is widely used as a therapeutic agent to cardiovascular diseases in clinics in China through intravenous administration, which could elicit adverse drug reactions caused by cosolvents, hindering its application in clinics. Therefore, the development of oral dosage is urgently needed. In our previous studies, we proved that the bioavailability of puerarin increased as particle sizes of nanocrystals decreased; however, we have not optimized the best process parameters for nanocrystals. In this study, we aim to fabricate fine nanocrystals (with smallest particle size) by Box–Behnken design and study the intestinal permeability of puerarin and its nanocrystals via employing everted gut sac model and in situ perfusion model. The results showed that the Box–Behnken design could be used to optimize the producing parameters of puerarin nanocrystals, and the particle sizes of fine nanocrystals were about 20 nm. Results of everted gut sacs showed that the polyvinylpyrrolidone (PVP) and verapamil had no influence on the absorption of puerarin and nanocrystals, and the nanocrystals could increase the Papp of puerarin for 2.2-, 2.9-, and 2.9-folds, respectively, in duodenum, jejunum, and ileum. Enhanced Ka and Peff were observed on the nanocrystal group, compared with puerarin, and PVP and verapamil had no influence on the absorption of nanocrystals, while the absorption of puerarin was influenced by P-gp efflux. Combining the results mentioned above, we can conclude that the Box–Behnken design benefits the optimization for preparation of nanocrystals, and the nanocrystals could enhance the intestinal absorption of puerarin by enhanced permeability and inhibited P-gp efflux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen R, Xue J, Xie ML. Puerarin prevents isoprenaline-induced myocardial fibrosis in mice by reduction of myocardial TGF-β1 expression. J Nutr Biochem. 2012;23(9):1080–5.

    CAS  PubMed  Google Scholar 

  2. Chen XH, Tian DQ, Wei LR. Literature analysis of adverse reactions induced by puerarin injection. Practical Pharmacy and Clinical Remedies. 2010;13(4):293–5.

    Google Scholar 

  3. Gao L, Liu GY, Ma JL, Wang XQ, Zhou L, Li X. Drug nanocrystals: in vivo performances. J Control Release. 2012;160(3):418–30.

    CAS  PubMed  Google Scholar 

  4. Keck CM, Kobierski S, Mauludin R, Müller RH. Second generation of drug nanocrystals for delivery of poorly soluble drugs: smartcrystals technology. Dosis. 2008;24(2):124–8.

    Google Scholar 

  5. Lu Y, Chen Y, Gemeinhart RA, Wu W, Li T. Developing nanocrystals for cancer treatment. Nanomedicine-UK. 2015;10(16):2537–52.

    CAS  Google Scholar 

  6. Lu Y, Li Y, Wu W. 2016. Injected nanocrystals for targeted drug delivery. Acta Pharm Sin B 2016;6(2):106–113.

  7. Wang GD, Mallet FP, Ricard F, Heng JYY. Pharmaceutical nanocrystals. Curr Opin Chem Eng. 2012;1(2):102–7.

    CAS  Google Scholar 

  8. Yue PF, Xiao MS, Xie YB, Ma YM, Guan YM, Wu ZF, et al. The roles of vitrification of stabilizers/matrix formers for the redispersibility of drug nanocrystals after solidification: a case study. AAPS PharmSciTech. 2016;17(6):1274–84.

    CAS  PubMed  Google Scholar 

  9. Xie YB, Ma YQ, Xu JN, Liu Y, Yue PF, Zheng Q, et al. Panax notoginseng saponins as a novel nature stabilizer for poorly soluble drug nanocrystals: a case study with baicalein. Molecules. 2016;21(9):1149.

    PubMed Central  Google Scholar 

  10. Malamatari M, Taylor KMG, Malamataris S, Douroumis D, Kachrimanis K. Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discov Today. 2018;23(3):534–47.

    CAS  PubMed  Google Scholar 

  11. Toziopoulou F, Malamatari M, Nikolakakisa I, Kachrimanis K. Production of aprepitant nanocrystals by wet media milling and subsequent solidification. Int J Pharm. 2017;533(2):324–34.

    CAS  PubMed  Google Scholar 

  12. Gao L, Zhang DR, Chen MH. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res. 2008;10(5):845–62.

    CAS  Google Scholar 

  13. Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62(1):3–16.

    CAS  PubMed  Google Scholar 

  14. Tu LX, Yi YN, Wu W, Hu FQ, Hu KL, Feng JF. Effects of particle size on the pharmacokinetics of puerarin nanocrystals and microcrystals after oral administration to rat. Int J Pharm. 2013;458(1):135–40.

    CAS  PubMed  Google Scholar 

  15. Yi YN, Tu LX, Hu KL, Wu W, Feng JF. The construction of puerarin nanocrystals and its pharmacokinetic and in vivo–in vitro correlation (IVIVC) studies on beagle dog. Colloid Suface B. 2015;133(1):164–70.

    CAS  Google Scholar 

  16. Roger E, Lagarce F, Garcion E, Benoit JP. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine-UK. 2010;5(2):287–306.

    CAS  Google Scholar 

  17. Yu Q, Wu XY, Zhu QG, Wu W, Chen ZJ, Li Y, et al. Enhanced transdermal delivery of meloxicam by nanocrystals: preparation, in vitro and in vivo evaluation. Asian J Pharm Sci. 2018;13(6):518–26.

    PubMed  Google Scholar 

  18. Xie YK, Shi BK, Xia F, Qi JP, Dong XC, Zhao WL, et al. Epithelia transmembrane transport of orally administered ultrafine drug particles evidenced by environment sensitive fluorophores in cellular and animal studies. J Control Release. 2017;270(28):65–75.

    PubMed  Google Scholar 

  19. Lu Y, Qi JP, Dong XC, Zhao WL, Wu W. The in vivo fate of nanocrystals. Drug Discov Today. 2017;22(4):744–50.

    CAS  PubMed  Google Scholar 

  20. Ma YQ, Yang Y, Xie J, Yue PF, Yang M. Novel nanocrystal-based solid dispersion with high drug loading, enhanced dissolution, and bioavailability of andrographolide. Int J Nanomedicine. 2018;13:3763–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kalam MA, Khan AA, Khan S, Almalik A, Alshamsan A. Optimizing indomethacin-loaded chitosan nanoparticle size encapsulation, and release using Box–Behnken experimental design. Int J Biol Macromol. 2016;87:329–40.

    Google Scholar 

  22. Xi J, Guo R. Interactions of puerarin with micelles: pKa shifts and thermodynamics. J Solut Chem. 2008;37:107–18.

    CAS  Google Scholar 

  23. Sa CL, Lv H, Ba YY, Sun JN, Shi RB. The effects of notoginsenoside R1 on the intestinal absorption of geniposide by the everted rat gut sac model. J Ethnopharmacol. 2012;142(1):136–43.

    Google Scholar 

  24. Vora AK, Londhe VY, Pandita NS. Preparation and characterization of standardized pomegranate extract-phospholipid complex as an effective drug delivery tool. J Adv Pharm Technol Res. 2015;6(2):75–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu HL, Tu LX, Zhou YX, Dang ZF, Wang LT, Du JF, et al. Improved bioavailability and antitumor effect of docetaxel by TPGS modified proniosomes: in vitro and in vivo evaluations. Sci Rep-UK. 2017;7:43372.

    Google Scholar 

  26. Tambe A, Mokashi P, Pandita N. Ex-vivo intestinal absorption study of boswellic acid, cyclodextrin complexes and poloxamer solid dispersions using everted gut sac technique. J Pharmaceut Biomed. 2019;167(15):66–73.

    CAS  Google Scholar 

  27. Huang S, Zhang Q, Li H, Sun YQ, Cheng G, Zou MJ, et al. Increased bioavailability of efonidipine hydrochloride nanosuspensions by the wet-milling method. Eur J Pharm Biopharm. 2018;130:108–14.

    CAS  PubMed  Google Scholar 

  28. Dahan A, West BT, Amidon GL. Segmental-dependent membrane permeability along the intestine following oral drug administration: evaluation of a triple single-pass intestinal perfusion (TSPIP) approach in the rat. Eur J Pharm Sci. 2009;36(2–3):320–9.

    CAS  PubMed  Google Scholar 

  29. Li HL, Zhao XB, Ma YK, Zhai GX, Li LB, Lou HX. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release. 2009;133(3):238–44.

    CAS  PubMed  Google Scholar 

  30. Greeshma VP, Vaibhav BP, Abhishek P, Sadhana JR. Nanosuspension of efavirenz for improved oral bioavailability: formulation optimization, in vitro, in situ and in vivo evaluation. Drug Dev Ind Pharm. 2014;40(1):80–91.

    Google Scholar 

  31. Sun MH, Zhai XZ, Xue KW, Hu L, Yang XL, Li G, et al. Intestinal absorption and intestinal lymphatic transport of sirolimus from self-microemulsifying drug delivery systems assessed using the single-pass intestinal perfusion (SPIP) technique and a chylomicron flow blocking approach: linear correlation with oral bioavailabilities in rats. Eur J Pharm Sci. 2011;43(3):132–40.

    CAS  PubMed  Google Scholar 

  32. Dahlgeren D, Roos C, Sjŏgren E, Lennernăs H. Direct in vivo human intestinal permeability (Peff) determined with different clinical perfusion and intubation methods. J Pharm Sci-US. 2015;104(9):2702–26.

    Google Scholar 

  33. Mohd Y, Udai VSS, Iti C, Praveen KG, Alok PS, Dinesh P, et al. Solid lipid nanoparticles for nose to brain delivery of donepezil: formulation, optimization by Box-Behnken design, in vitro and in vivo evaluation. Artif Cell Nanomed B. 2018;46(8):1838–51.

    Google Scholar 

  34. Hao JF, Fang XS, Zhou YF, Wang JZ, Guo FG, Li F, et al. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int J Nanomedicine. 2011;6:683–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumar S, Narayan R, Ahammed V, Nayak Y, Naha A, Nayak UY. Development of ritonavir solid lipid nanoparticles by Box Behnken design for intestinal lymphatic targeting. J Drug Deliv Sci Tec. 2018;44:181–9.

    CAS  Google Scholar 

  36. Müller RH, Peters K. Nanosuspensions for the formulation of poorly soluble drugs: preparation by a size-reduction technique. Int J Pharm. 1998;160(2):229–37.

    Google Scholar 

  37. Skrdla PJ, Floyd PD, Dell’Orco PC. Predicting the solubility enhancement of amorphous drugs and related phenomena using basic thermodynamic principles and semi-empirical kinetic models. Int J Pharm. 2019;567:118465.

    CAS  PubMed  Google Scholar 

  38. Yaňez F, Concheiro A, Alvarez-Lorenzo C. Macromolecule release and smoothness of semi-interpenetrating PVP–pHEMA networks for comfortable soft contact lenses. Eur J Pharm Biopharm. 2008;69:1094–03.

    PubMed  Google Scholar 

  39. Zhou Y, Song X, Dong G. Effects of verapamil on the pharmacokinetics of puerarin in rats. Xenobiotica. 2018;49(10):1178–82.

    Google Scholar 

  40. Yi T, Tang DD, Wang F, Zhang JQ, Zhang J, Wang JR, et al. Enhancing both oral bioavailability and brain penetration of puerarin using borneol in combination with preparation technologies. Drug Deliv. 2017;24(1):422–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ballent M, Lifschitz A, Virkel G, Sallovitz J, Lanusse C. Modulation of the P-glycoprotein-mediated intestinal secretion of ivermectin: in vitro and in vivo assessments. Drug Metab Dispos. 2006;34(3):457–63.

    CAS  PubMed  Google Scholar 

  42. Li M, Si LQ, Pan HP, Rabba AK, Yan F, Qiu J, et al. Excipients enhance intestinal absorption of ganciclovir by P-gp inhibition: assessed in vitro by everted gut sac and in situ by improved intestinal perfusion. Int J Pharm. 2011;403(1–2):37–45.

    CAS  PubMed  Google Scholar 

  43. Ueda K, Iwai T, Sunazuka Y, Chen Z, Kato N, Higashi K, et al. Effect of molecular weight of hypromellose on mucin diffusion and oral absorption behavior of fenofibrate nanocrystal. Int J Pharm. 2019;564:39–47.

    CAS  PubMed  Google Scholar 

  44. Yeh T, Hsu L, Tseng M, Lee P, Sonjae K, Ho Y, et al. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials. 2011;32(26):6164–73.

    CAS  PubMed  Google Scholar 

  45. Sharma S, Verma A, Pandey G, Mittapelly N, Mishra PR. Investigating the role of Pluronic-g-cationic polyelectrolyte as functional stabilizer for nanocrystals: impact on paclitaxel oral bioavailability and tumor growth. Acta Biomater. 2015;26:169–83.

    CAS  PubMed  Google Scholar 

  46. Miao X, Li Y, Wang X, Lee S, Zheng Y. Transport mechanism of coumarin 6 nanocrystals with two particle sizes in MDCKII monolayer and larval zebrafish. ACS Appl Mater Interfaces. 2016;8(20):12620–30.

    CAS  PubMed  Google Scholar 

  47. Liu DD, Xu HM, Tian BC, Yuan K, Pan H, Ma SL, et al. Fabrication of carvedilol nanosuspensions through the anti-solvent precipitation–ultrasonication method for the improvement of dissolution rate and oral bioavailability. AAPS PharmSciTech. 2012;13(1):295–04.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Deng FY, Zhang H, Wang X, Zhang Y, Hu HX, Song SY, et al. Transmembrane pathways and mechanisms of rod-like paclitaxel nanocrystals through MDCK polarized monolayer. ACS Appl Mater Interfaces. 2017;9(7):5803–16.

    CAS  PubMed  Google Scholar 

  49. Guo MR, Wei MD, Li W, Guo MC, Guo CL, Ma MC, et al. Impacts of particle shapes on the oral delivery of drug nanocrystals: mucus permeation, transepithelial transport and bioavailability. J Control Release. 2019;307:64–75.

    CAS  PubMed  Google Scholar 

  50. Xie YK, Shi BK, Xia F, Qi JP, Dong XC, Zhao WL, et al. Epithelia transmembrane transport of orally administered ultrafine drug particles evidenced by environment sensitive fluorophores in cellular and animal studies. J Control Release. 2017;270:65–75.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81960717, 81573623), the Natural Science Foundation of Jiangxi province (20192BAB215057), and the “Double First-Class” discipline project of Jiangxi Province (JXSYLXK-ZHYA0015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianfang Feng or Liangxing Tu.

Ethics declarations

Ethics Statement

All procedures were approved by the Animal Research Ethics Committee, Jiangxi University of Traditional Chinese Medicine.

Conflict of Interest

The authors declare there are no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Yuan, F., Liu, J. et al. Fabrication of Fine Puerarin Nanocrystals by Box–Behnken Design to Enhance Intestinal Absorption. AAPS PharmSciTech 21, 90 (2020). https://doi.org/10.1208/s12249-019-1616-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1616-4

KEY WORDS

Navigation