Skip to main content
Log in

Pressurized Metered Dose Inhaler Technology: Manufacturing

  • Review Article
  • Theme: Paul Myrdal Memorial Issue - Pharmaceutical Formulation and Aerosol Sciences
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

While first introduced in the 1950s, pressurized metered dose inhalers (pMDIs) remain as a first line treatment of pulmonary conditions. With expanding applications of pMDIs beyond asthma and chronic obstructive pulmonary disease (COPD), the development of therapies utilizing the pMDI platform will undoubtedly continue. Recent guidances and the introduction of quality by design initiatives further emphasize the requirement of formulators to understand the relationships between product attributes and production strategies and their impact on product performance. This review summarizes common manufacturing processes of pMDIs across multiple stages of the development cycle, from academia to commercial production, and provides insight as to the benefits and limitations of each process in regard to formulation type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Newman S. Principles of metered-dose inhaler design. Respir Care. 2005;50(9):1177–90.

    PubMed  Google Scholar 

  2. Thiel C. From Susie’s question to CFC free: an inventor’s perspective on forty years of MDI development and regulation. RDD V. 1996;1:115–24.

    Google Scholar 

  3. Purewal T, Grant D. Metered dose inhaler technology. CRC Press; 1997.

  4. Kontny M, Destefano G, Jager P, McNamara D, Turi J, Van-Campen L. Issues surrounding MDI formulation development with non-CFC propellants. J Aerosol Med. 1991;4(3):181–7.

    Article  CAS  Google Scholar 

  5. FDA. CDER, Metered dose inhaler (MDI) and dry power inhaler (DPI) products—quality considerations, guidance for industry. 2018.

  6. Lyapustina S. Regulatory pitfalls and opportunities when repurposing for inhalation therapy. Adv Drug Deliv Rev. 2018;133:57–65.

    Article  CAS  Google Scholar 

  7. FDA. CDER, CBER, guidance for industry, container closure systems for packaging human drugs and biologics. Chemistry, Manufacturing and Controls Documentation, 1999.

  8. FDA. CDER, CBER, Draft guidance for industry on inhalation drug products packaged in semipermeable container closure systems. 2002.

  9. Byron P. Trends in formulation and manufacture of metered dose inhalers. RDD II. 1990;1:340–61.

    Google Scholar 

  10. Myrdal P, Sheth P, Stein S. Advances in metered dose inhaler technology: formulation development. AAPS PharmSciTech. 2014;15(2):434–55.

    Article  CAS  Google Scholar 

  11. Ramteke K, Gunjal S, Sharma Y. Formulation and quality control of metered dose inhaler: a review. JPSI. 2012;1(2):44–9.

    Google Scholar 

  12. Hickey A. Pharmaceutical inhalation aerosol technology, 2nd ed. CRC Press; 2003.

  13. European Union Good Manufacturing Practices Annex 10: manufacture of pressurised metered dose aerosol preparations for inhalation. European Union: European Commission, Enterprise and Industry; 2003.

  14. Gelotte K, Shadeed D. Water solubility in metered-dose inhaler media containing different propellants. Pharm Sci. 1998;1:210.

    Google Scholar 

  15. Smyth H. The influence of formulation variables on the performance of alternative propellant-driven metered dose inhalers. Adv Drug Deliv Rev. 2003;55(7):807–28.

    Article  CAS  Google Scholar 

  16. Errington R. Inhalation manufacturing: cold fill, pressure fill, and finding the right partner. ONdrug Delivery. 2012;37:30–2.

    Google Scholar 

  17. Thorat S, Meshram S. Formulation and product development of pressurised metered dose inhaler: an overview. PharmaTutor. 2015;3(9):53–64.

    CAS  Google Scholar 

  18. Berry S, Colombani A, Fletcher I, Dickie D, Ludzik A, Hodson D, et al. inventors; AstraZeneca UK Ltd, assignee. Process for providing a filled canister for an inhaler. US patent US 2013/0112194 A1. 2013 2011/02/09.

  19. Chaudhry S, Sharpe S, Berry J, Sequeira J, inventors; S Chaudhry, S Sharpe, J Berry, J Sequeira, assignee. Process for producing metered dose inhaler formulations. US patent US 2013/0068218 A1. 2013 2012/08/23.

  20. Slowey A, Boswell S, Jinks P, inventors; 3M Innovative Properties Co, assignee. Formoterol and mometasone aerosol formulations. US patent US 8252268 B2. 2012 2004/09/24.

  21. Keller M, Herzog K, Mueller-Walz R, Kraus H, inventors; JAGO RES AG, assignee. Medicinal aerosol formulations. US patent US 6475467 B1. 2002 2001/04/20.

  22. Irving R, inventor; Carter Prod Inc, assignee. Method of filling pressuretight containers with a liquid product and a volatile propellant. US patent US 2613023 A. 1952 1950/03/11.

  23. Helm S, Baron C, editors. Pressure filling capability for 3M Spraymiser pMDI’s. The aerosol society drug delivery to the lungs XVII; 2006; Edinburgh International Conference Centre, Scotland, UK: J Aerosol Med.

  24. Butz J, Cruz L, Ganguly S, Goodey A, Ewing G. Development of a Lasentec focused beam reflectance measurement (FBRM) method as a process analytical technology (PAT) tool to evaluate and monitor manufacturing processes for metered dose inhalers (MDI). Respiratory Drug Delivery. 2010;3:659–62.

    Google Scholar 

  25. Moris R, inventor; Minnesota Mining & Mfg, assignee. Aerosol filling method. US patent US 5275212 A. 1994 1993/02/24.

  26. Burt P, Kwok L, inventors; Glaxo Group Ltd, assignee. Method and apparatus an aerosol container. US patent US 5345980 A. 1994 1993/09/07.

  27. Butz J, Ldl C, DiTonno J, DeBoyace K, Ewing G, Donovan B, et al. Raman spectroscopy for the process analysis of the manufacturing of a suspension metered dose inhaler. J Pharm Biomed Anal. 2011;54(5):1013–9.

    Article  CAS  Google Scholar 

  28. Rignall A. Developing inhalation products using quality by design principles. Presentation at Medilink Conference, 2011. Available at http://www.medilinkem.com/docs/events-documents/andy-rignall—developing-inhalation-products-using-quality-by-design-principles.pdf. 2011.

  29. Zhang F, Adjei A. A simple analytical model to estimate the impact of propellant evaporation on the change of formulation concentration in a pMDI canister or in a batch manufacturing formulation tank. RDD IX. 2004;3:673–6.

    Google Scholar 

  30. Li-Bovet L, Holt J, inventors; Generics UK Ltd, assignee. Preparation of suspension aerosol formulations. US patent US 9808423 B2. 2017 2005/10/12.

  31. Steckel H, Wehle S. A novel formulation technique for metered dose inhaler (MDI) suspensions. Int J Pharm. 2004;284(1–2):75–82.

    Article  CAS  Google Scholar 

  32. Millard J, Myrdal P. Anhydrous beclomethasone dipropionate. Acta Crystallogr Sect E: Struct Rep Online. 2002;58(7):o712–o4.

    Article  CAS  Google Scholar 

  33. Harris J, Carducci M, Myrdal P. Beclomethasone dipropionate crystallized from HFA-134a and ethanol. Acta Crystallogr E. 2003;59(11):o1631–o3.

    Article  CAS  Google Scholar 

  34. WilliamsIII R, Liu J. Formulation of a protein with propellant HFA 134a for aerosol delivery. Eur J Pharm Sci. 1999;7(2):137–44.

    Article  Google Scholar 

  35. Tarara T, Hartman M, Gill H, Kennedy A, Weers J. Characterization of suspension-based metered dose inhaler formulations composed of spray-dried budesonide microcrystals dispersed in HFA-134a. Pharm Res. 2004;21(9):1607–14.

    Article  CAS  Google Scholar 

  36. Shrikhande S, Rao A, Ambekar A, Bajaj A. Metered dose inhalation formulations for salbutamol sulphate using non-CFC propellant tetrafluoroethane. Int J Pharm Drug Res. 2011;3(4):292–6.

    CAS  Google Scholar 

  37. Byron P, Dalby R, inventors; Virginia Commonwealth University, assignee. Formulations for delivery of drugs by metered dose inhalers with reduced or no chlorofluorocarbon content. US patent US 5182097 A. 1993 1991/02/14.

  38. Mistry S, Gibson M, inventors; Fisons PLC, assignee. Pressurized aerosol inhalation compositions. US patent US 6123924 A. 2000 1995/06/07.

  39. Vallorz E, Sheth P. Effect of nitrogen headspace during pMDI manufacturing on droplet size distribution. RDD. 2016;2:291–4.

    Google Scholar 

  40. Kelkar M, Dalby R. Effervescent aerosols: a novel formulation technology for pressurized metered dose inhalers. RDD. 2014;3:669–72.

    Google Scholar 

  41. Brown A, George D. Tetrafluoroethane (RFC 134A) propellant-driven aerosols of proteins. Pharm Res. 1997;14(11):1542–7.

    Article  CAS  Google Scholar 

  42. Nyambura B, Kellaway I, Taylor K. Insulin nanoparticles: stability and aerosolization from pressurized metered dose inhalers. Int J Pharm. 2009;375(1–2):114–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest Vallorz.

Additional information

Guest Editors: Philip J. Kuehl and Stephen W. Stein

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallorz, E., Sheth, P. & Myrdal, P. Pressurized Metered Dose Inhaler Technology: Manufacturing. AAPS PharmSciTech 20, 177 (2019). https://doi.org/10.1208/s12249-019-1389-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1389-9

KEY WORDS

Navigation