Skip to main content

Advertisement

Log in

Labrasol-Enriched Nanoliposomal Formulation: Novel Approach to Improve Oral Absorption of Water-Insoluble Drug, Carvedilol

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of the current study was to develop a novel liposomal formulation to improve the oral bioavailability of carvedilol, a Biopharmaceutics Classification System class II with poor aqueous solubility and extensive presystemic metabolism. Conventional and various surfactant-enriched carvedilol-loaded liposomes were prepared by thin film hydration technique and physicochemical properties of liposomes (including size, encapsulation efficiency, release behavior, and morphology) were evaluated. To assess the oral bioavailability, in vivo studies were carried out in eight groups of male Wistar rats (n = 6) and the drug plasma concentration was determined. Conventional and surfactant containing liposomes showed average particle size of 76–104 nm with a narrow size distribution, high encapsulation efficiency (80%≤) and a sustained release profile in simulated intestinal fluid. Compared to the suspension, conventional and Labrasol containing liposomes significantly improved the oral bioavailability and peak plasma concentration of carvedilol. Biocompatibility studies (cell cytotoxicity and histopathological analyses) showed that the enhancing effect might be achieved without any apparent toxicity in the intestine. Decreased oral absorption of carvedilol nanovesicles by using a chylomicron flow blocker indicated contribution of lymphatic transport in nanocapsules absorption. The results reported the successful development of biocompatible Labrasol-enriched carvedilol nanoliposomal formulation with a significant oral enhancement capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alam MA, Al-Jenoobi FI, Al-Mohizea AM, Ali R. Understanding and managing oral bioavailability: physiological concepts and patents. Recent Pat Anticancer Drug Discov. 2015;10(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  2. Pathak K, Raghuvanshi S. Oral bioavailability: issues and solutions via nanoformulations. Clin Pharmacokinet. 2015;54(4):325–57.

    Article  CAS  PubMed  Google Scholar 

  3. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  4. Chang D, Ma Y, Cao G, Wang J, Zhang X, Feng J, et al. Improved oral bioavailability for lutein by nanocrystal technology: formulation development, in vitro and in vivo evaluation. Artif Cells Nanomed Biotechnol 2017;1–7.

  5. Liu Y, Tee JK, Chiu GN. Dendrimers in oral drug delivery application: current explorations, toxicity issues and strategies for improvement. Curr Pharm Des. 2015;21(19):2629–42.

    Article  CAS  PubMed  Google Scholar 

  6. Arzani G, Haeri A, Daeihamed M, Bakhtiari-Kaboutaraki H, Dadashzadeh S. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge. Int J Nanomedicine. 2015;10:4797–813.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li J, Jiang Q, Deng P, Chen Q, Yu M, Shang J, et al. The formation of a host-guest inclusion complex system between beta-cyclodextrin and baicalin and its dissolution characteristics. J Pharm Pharmacol. 2017;69(6):663–74.

    Article  CAS  PubMed  Google Scholar 

  8. Liu QY, Zhang ZH, Jin X, Jiang YR, Jia XB. Enhanced dissolution and oral bioavailability of tanshinone IIA base by solid dispersion system with low-molecular-weight chitosan. J Pharm Pharmacol. 2013;65(6):839–46.

    Article  CAS  PubMed  Google Scholar 

  9. Daeihamed M, Haeri A, Ostad SN, Akhlaghi MF, Dadashzadeh S. Doxorubicin-loaded liposomes: enhancing the oral bioavailability by modulation of physicochemical characteristics. Nanomedicine (London). 2017;12(10):1187–202.

    Article  CAS  Google Scholar 

  10. Daeihamed M, Dadashzadeh S, Haeri A, Akhlaghi MF. Potential of liposomes for enhancement of oral drug absorption. Curr Drug Deliv. 2017;14(2):289–303.

    CAS  PubMed  Google Scholar 

  11. Hallan SS, Kaur P, Kaur V, Mishra N, Vaidya B. Lipid polymer hybrid as emerging tool in nanocarriers for oral drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):334–49.

    Article  CAS  PubMed  Google Scholar 

  12. Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–48.

    Article  CAS  PubMed  Google Scholar 

  13. Fricker G, Kromp T, Wendel A, Blume A, Zirkel J, Rebmann H, et al. Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res. 2010;27(8):1469–86.

    Article  CAS  PubMed  Google Scholar 

  14. Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):381–91.

    Article  CAS  PubMed  Google Scholar 

  15. Wei Y, Guo J, Zheng X, Wu J, Zhou Y, Yu Y, et al. Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. Int J Nanomedicine. 2014;9:3623–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shao Y, Yang L, Han HK. TPGS-chitosome as an effective oral delivery system for improving the bioavailability of coenzyme Q10. Eur J Pharm Biopharm. 2015;89:339–46.

    Article  CAS  PubMed  Google Scholar 

  17. Rao S, Tan A, Thomas N, Prestidge CA. Perspective and potential of oral lipid-based delivery to optimize pharmacological therapies against cardiovascular diseases. J Control Release. 2014;193(Supplement C):174–87.

    Article  CAS  PubMed  Google Scholar 

  18. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957–67.

    Article  PubMed  Google Scholar 

  19. Morgan T. Clinical pharmacokinetics and pharmacodynamics of carvedilol. Clin Pharmacokinet. 1994;26(5):335–46.

    Article  CAS  PubMed  Google Scholar 

  20. Chakraborty S, Shukla D, Mishra B, Singh S. Clinical updates on carvedilol: a first choice beta-blocker in the treatment of cardiovascular diseases. Expert Opin Drug Metab Toxicol. 2010;6(2):237–50.

    Article  CAS  PubMed  Google Scholar 

  21. Guideline ICH. Validation of analytical procedures: text and methodology. Q2 (R1). 2005;1.

  22. Lind ML, Jacobsen J, Holm R, Mullertz A. Intestinal lymphatic transport of halofantrine in rats assessed using a chylomicron flow blocking approach: the influence of polysorbate 60 and 80. Eur J Pharm Sci. 2008;35(3):211–8.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Prog Biomed. 2010;99(3):306–14.

    Article  Google Scholar 

  24. Thwala LN, Preat V, Csaba NS. Emerging delivery platforms for mucosal administration of biopharmaceuticals: a critical update on nasal, pulmonary and oral routes. Expert Opin Drug Deliv. 2017;14(1):23–36.

    Article  CAS  PubMed  Google Scholar 

  25. Mazzaferro S, Bouchemal K, Ponchel G. Oral delivery of anticancer drugs I: general considerations. Drug Discov Today. 2013;18(1–2):25–34.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Y, Ning Q, Yu DN, Li WG, Deng J. Improved oral bioavailability of breviscapine via a Pluronic P85-modified liposomal delivery system. J Pharm Pharmacol. 2014;66(7):903–11.

    Article  CAS  PubMed  Google Scholar 

  27. Huang YB, Tsai MJ, Wu PC, Tsai YH, Wu YH, Fang JY. Elastic liposomes as carriers for oral delivery and the brain distribution of (+)-catechin. J Drug Target. 2011;19(8):709–18.

    Article  CAS  PubMed  Google Scholar 

  28. Packer M, Fowler MB, Roecker EB, Coats AJ, Katus HA, Krum H, et al. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation. 2002;106(17):2194–9.

    Article  PubMed  Google Scholar 

  29. Bachmakov I, Werner U, Endress B, Auge D, Fromm MF. Characterization of beta-adrenoceptor antagonists as substrates and inhibitors of the drug transporter P-glycoprotein. Fundam Clin Pharmacol. 2006;20(3):273–82.

    Article  CAS  PubMed  Google Scholar 

  30. Bart J, Dijkers EC, Wegman TD, de Vries EG, van der Graaf WT, Groen HJ, et al. New positron emission tomography tracer [(11)C]carvedilol reveals P-glycoprotein modulation kinetics. Br J Pharmacol. 2005;145(8):1045–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Netsomboon K, Laffleur F, Suchaoin W, Bernkop-Schnurch A. Novel in vitro transport method for screening the reversibility of P-glycoprotein inhibitors. Eur J Pharm Biopharm. 2016;100:9–14.

    Article  CAS  PubMed  Google Scholar 

  32. Yu H, Hu YQ, Ip FC, Zuo Z, Han YF, Ip NY. Intestinal transport of bis(12)-hupyridone in Caco-2 cells and its improved permeability by the surfactant Brij-35. Biopharm Drug Dispos. 2011;32(3):140–50.

    Article  CAS  PubMed  Google Scholar 

  33. Guo Y, Luo J, Tan S, Otieno BO, Zhang Z. The applications of vitamin E TPGS in drug delivery. Eur J Pharm Sci. 2013;49(2):175–86.

    Article  CAS  PubMed  Google Scholar 

  34. Dubray O, Jannin V, Demarne F, Pellequer Y, Lamprecht A, Beduneau A. In-vitro investigation regarding the effects of Gelucire(R) 44/14 and Labrasol(R) ALF on the secretory intestinal transport of P-gp substrates. Int J Pharm. 2016;515(1–2):293–9.

    Article  CAS  PubMed  Google Scholar 

  35. Ma L, Wei Y, Zhou Y, Ma X, Wu X. Effects of Pluronic F68 and Labrasol on the intestinal absorption and pharmacokinetics of rifampicin in rats. Arch Pharm Res. 2011;34(11):1939–43.

    Article  CAS  PubMed  Google Scholar 

  36. Mudra DR, Borchardt RT. Absorption barriers in the rat intestinal mucosa. 3: effects of polyethoxylated solubilizing agents on drug permeation and metabolism. J Pharm Sci. 2010;99(2):1016–27.

    Article  CAS  PubMed  Google Scholar 

  37. da Silva ME, Meirelles NC. Interaction of non-ionic surfactants with hepatic CYP in Prochilodus scrofa. Toxicol in Vitro. 2004;18(6):859–67.

    Article  CAS  PubMed  Google Scholar 

  38. Christiansen A, Backensfeld T, Denner K, Weitschies W. Effects of non-ionic surfactants on cytochrome P450-mediated metabolism in vitro. Eur J Pharm Biopharm. 2011;78(1):166–72.

    Article  CAS  PubMed  Google Scholar 

  39. Iqbal J, Sakloetsakun D, Bernkop-Schnurch A. Thiomers: inhibition of cytochrome P450 activity. Eur J Pharm Biopharm. 2011;78(3):361–5.

    Article  CAS  PubMed  Google Scholar 

  40. Cheng HY, Randall CS, Holl WW, Constantinides PP, Yue TL, Feuerstein GZ. Carvedilol-liposome interaction: evidence for strong association with the hydrophobic region of the lipid bilayers. Biochim Biophys Acta. 1996;1284(1):20–8.

    Article  PubMed  Google Scholar 

  41. Niu M, Lu Y, Hovgaard L, Guan P, Tan Y, Lian R, et al. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur J Pharm Biopharm. 2012;81(2):265–72.

    Article  CAS  PubMed  Google Scholar 

  42. Desai J, Thakkar H. Effect of particle size on oral bioavailability of darunavir-loaded solid lipid nanoparticles. J Microencapsul. 2016;33(7):669–78.

    Article  CAS  PubMed  Google Scholar 

  43. Stimac A, Segota S, Dutour Sikiric M, Ribic R, Frkanec L, Svetlicic V, et al. Surface modified liposomes by mannosylated conjugates anchored via the adamantyl moiety in the lipid bilayer. Biochim Biophys Acta. 2012;1818(9):2252–9.

    Article  CAS  PubMed  Google Scholar 

  44. Jacquot A, Francius G, Razafitianamaharavo A, Dehghani F, Tamayol A, Linder M, et al. Morphological and physical analysis of natural phospholipids-based biomembranes. PLoS One. 2014;9(9):e107435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liang X, Mao G, Ng KY. Effect of chain lengths of PEO-PPO-PEO on small unilamellar liposome morphology and stability: an AFM investigation. J Colloid Interface Sci. 2005;285(1):360–72.

    Article  CAS  PubMed  Google Scholar 

  46. Shargel L, Andrew B, Wu-Pong S. Applied biopharmaceutics & pharmacokinetics. New York: McGraw-Hill; 2005.

    Google Scholar 

  47. Bajelan E, Haeri A, Vali AM, Ostad SN, Dadashzadeh S. Co-delivery of doxorubicin and PSC 833 (Valspodar) by stealth nanoliposomes for efficient overcoming of multidrug resistance. J Pharm Pharm Sci. 2012;15(4):568–82.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Zhang H, Che E, Zhang L, Han J, Yang Y, et al. Development of novel mesoporous nanomatrix-supported lipid bilayers for oral sustained delivery of the water-insoluble drug, lovastatin. Colloids Surf B: Biointerfaces. 2015;128:77–85.

    Article  CAS  PubMed  Google Scholar 

  49. Sangsen Y, Wiwattanawongsa K, Likhitwitayawuid K, Sritularak B, Wiwattanapatapee R. Modification of oral absorption of oxyresveratrol using lipid based nanoparticles. Colloids Surf B: Biointerfaces. 2015;131:182–90.

    Article  CAS  PubMed  Google Scholar 

  50. Rama Prasad YV, Minamimoto T, Yoshikawa Y, Shibata N, Mori S, Matsuura A, et al. In situ intestinal absorption studies on low molecular weight heparin in rats using labrasol as absorption enhancer. Int J Pharm. 2004;271(1–2):225–32.

    Article  CAS  PubMed  Google Scholar 

  51. Aggarwal N, Goindi S, Mehta SD. Preparation and evaluation of dermal delivery system of griseofulvin containing vitamin E-TPGS as penetration enhancer. AAPS PharmSciTech. 2012;13(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  52. Siram K, Chellan VR, Natarajan T, Krishnamoorthy B, Mohamed Ebrahim HR, Karanam V, et al. Solid lipid nanoparticles of diethylcarbamazine citrate for enhanced delivery to the lymphatics: in vitro and in vivo evaluation. Expert Opin Drug Deliv. 2014;11(9):1351–65.

    Article  CAS  PubMed  Google Scholar 

  53. Cai S, Yang Q, Bagby TR, Forrest ML. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev. 2011;63(10–11):901–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou A, Lu T, Wang L, Lu C, Wang L, Wan M, et al. Lymphatic transport of puerarin occurs after oral administration of different lipid-based formulations to unconscious lymph duct-cannulated rats. Pharm Dev Technol. 2014;19(6):743–7.

    Article  CAS  PubMed  Google Scholar 

  55. Fu Q, Sun J, Ai X, Zhang P, Li M, Wang Y, et al. Nimodipine nanocrystals for oral bioavailability improvement: role of mesenteric lymph transport in the oral absorption. Int J Pharm. 2013;448(1):290–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by a grant from Shahid Beheshti University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Azadeh Haeri or Simin Dadashzadeh.

Ethics declarations

Conflict of Interest

The authors report no conflicts of interest.

Electronic Supplementary Material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghassemi, S., Haeri, A., Shahhosseini, S. et al. Labrasol-Enriched Nanoliposomal Formulation: Novel Approach to Improve Oral Absorption of Water-Insoluble Drug, Carvedilol. AAPS PharmSciTech 19, 2961–2970 (2018). https://doi.org/10.1208/s12249-018-1118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1118-9

KEY WORDS

Navigation