Skip to main content

Advertisement

Log in

Metformin-Loaded Hyaluronic Acid Nanostructure for Oral Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of this study was to develop a nanodelivery system containing a mucoadhesive polymer hyaluronic acid (HA) for oral delivery. Metformin was used as a model drug. Blank and drug-loaded HA nanostructures were prepared by precipitation method and characterized for particle size (PS), zeta potential (ZP), physical stability (over 65 days), surface morphology, moisture content, and physical state of the drug in the nanostructures. The cytotoxicity and hemolysis potential of the delivery system was assessed in Caco-2 cells and whole human blood, respectively. The in vitro release of metformin and its uptake in Caco-2 cells was evaluated using high-performance liquid chromatography. Ex vivo permeability of metformin was measured through goat intestinal membrane. The nanoparticles were physically stable and neutrally charged with an average PS of 114.53 ± 12.01 nm. This nanodelivery system existed as nanofibers containing metformin in a crystalline state. This delivery system released the drug rapidly with > 50% of metformin released within 1 h. Cellular uptake studies on Caco-2 cells indicated higher uptake of metformin from nanoparticle as compared to metformin in solution, up to first 45 min. Ex vivo permeability studies on the other hand showed a higher metformin permeability from solution relative to that from nanoparticles through the goat intestinal membrane. Metformin nanoparticles were non-toxic at therapeutic concentrations in Caco-2 cells and showed no hemolytic effect to RBCs. This study indicates the preparation, characterization, as well as the potential use of HA nanostructures for oral delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roglic G. WHO Global report on diabetes: A summary. International Journal of Noncommunicable Diseases. 2016;1(1):3.

    Article  Google Scholar 

  2. Centers for Disease Control and Prevention. National diabetes statistics report, 2014: estimates of diabetes and its burden in the United States. Atlanta, GA: US Department of Health and Human Services. 2014.

  3. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care. 2004;27(suppl 1):s5–10.

    Google Scholar 

  4. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia. 2003;46(1):3–19.

    Article  PubMed  CAS  Google Scholar 

  5. Rowan JA, Hague WM, Gao W, Battin MR, Moore MP. Metformin versus insulin for the treatment of gestational diabetes. N Engl J Med 2008;358(19):2003–15.

    Article  PubMed  CAS  Google Scholar 

  6. Tripathi KD. Essentials of medical pharmacology. JP Medical Ltd; 2008;266–270.

  7. Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, Ianculescu AG, Yue L, Lo JC, Burchard EG, Brett CM. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest. 2007;117(5):1422–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Klip A, L A L. Cellular mechanism of action of metformin. Diabetes Care. 1990;13(6):696–704.

    Article  PubMed  CAS  Google Scholar 

  9. Proctor WR, Bourdet DL, Thakker DR. Mechanisms underlying saturable intestinal absorption of metformin. Drug Metab Dispos 2008;36(8):1650–8.

    Article  PubMed  CAS  Google Scholar 

  10. Gonga L, Goswami S, Giacominic KM, Altman RB, Klein TE. Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2013;22(11):820–7.

    Article  CAS  Google Scholar 

  11. Lee WL, Wee P, Nugraha C, Loo SCJ. Gastric-floating microcapsules provide controlled and sustained release of multiple cardiovascular drugs. J Mater Chem B. 2013;1(8):1090–5.

    Article  CAS  Google Scholar 

  12. Cheng C-L, Yu LX, Lee H-L, Yang C-Y, Lue C-S, Chou C-H. Biowaiver extension potential to BCS class III high solubility-low permeability drugs: bridging evidence for metformin immediate-release tablet. Eur J Pharm Sci. 2004;22(4):297–304.

    Article  PubMed  CAS  Google Scholar 

  13. Carino GP, Mathiowitz E. Oral insulin delivery 1. Adv Drug Deliv Rev. 1999;35:249–57.

    Article  PubMed  CAS  Google Scholar 

  14. Italia JL, Bhatt DK, Bhardwaj V, Tikoo K, MNVR K. PLGA nanoparticles for oral delivery of cyclosporine: nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral. J Control Release. 2007;119(2):197–206.

    Article  PubMed  CAS  Google Scholar 

  15. Desai PP, Date AA, Patravale VB. Overcoming poor oral bioavailability using nanoparticle formulations—opportunities and limitations. Drug Discov Today Technol. 2012;9(2):e71–174.

    Article  CAS  Google Scholar 

  16. Woitiski CB, Sarmento B, Carvalho RA, Neufeld RJ, Veiga F. Facilitated nanoscale delivery of insulin across intestinal membrane models. Int J Pharm. 2011;412(1–2):123–31.

    Article  PubMed  CAS  Google Scholar 

  17. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007;24(12):2198–206.

    Article  PubMed  CAS  Google Scholar 

  18. Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MNV. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release. 2007;119(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  19. Meena AK, Ratnam VD, Chandraiah G, Ankola DD, Rao RP, Kumar MR. Oral nanoparticulate atorvastatin calcium is more efficient and safe in comparison to Lipicure® in treating hyperlipidemia. Lipids. 2008;43(3):231–41.

    Article  PubMed  CAS  Google Scholar 

  20. Agrahari V, Zhang C, Zhang T, Li W, Gounev TK, Oyler NA, et al. Hyaluronidase-sensitive nanoparticle templates for triggered release of HIV/AIDS microbicide in vitro. AAPS J. 2014;16:181–93.

    Article  PubMed  CAS  Google Scholar 

  21. Sanka ASK, Sythana S, Jhansi A, Shanmugasundharam P. Development and validation for simultaneous estimation of sitagliptin and metformin in pharmaceutical dosage form using RP-HPLC method. Int J Pharmtech Res. 2013;5(4):1736–44.

    Google Scholar 

  22. Debebe Z, Nekhai S, Ashenafi M, Lovejoy DB, Kalinowski DS, Gordeuk VR, et al. Development of a sensitive HPLC method to measure in vitro permeability of E- and Z-isomeric forms of thiosemicarbazones in Caco-2 monolayers. J Chromatogr B Anal Technol Biomed Life Sci. 2012;906:25–32.

    Article  CAS  Google Scholar 

  23. Sandri G, Rossi S, Ferrari F, Bonferoni MC, Zerrouk N, Caramella C. Mucoadhesive and penetration enhancement properties of three grades of hyaluronic acid using porcine buccal and vaginal tissue, Caco-2 cell lines, and rat jejunum. J Pharm Pharmacol. 2004;56(9):1083–90.

    Article  PubMed  CAS  Google Scholar 

  24. Saettone MF, Giannaccini R, Chetoni P, Torracca MT, Monti D. Evaluation of high- and low-molecular weight fractions of sodium hyaluranate and an ionic complex as adjuvants for topical ophthalmic vehicles containing pilocarpine. Int J Pharm. 1991;72:131–9.

    Article  CAS  Google Scholar 

  25. Necas J, Bartosikova L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan ): a review. Vet Med (Praha). 2008;2008(8):397–411.

    Article  Google Scholar 

  26. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res. 1997;14:1568–73.

    Article  PubMed  CAS  Google Scholar 

  27. Verma S, Kumar S, Gokhale R, Burgess D. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm. 2011;406(1):145–52.

    Article  PubMed  CAS  Google Scholar 

  28. Sonaje K, Lin Y-H, Juang J-H, Wey S-P, Chen C-T, Sung H-W. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials. 2009;30(12):2329–39.

    Article  PubMed  CAS  Google Scholar 

  29. Karlsson J, Ungell A-L, Gråsjö J, Artursson P. Paracellular drug transport across intestinal epithelia: influence of charge and induced water flux. Eur J Pharm Sci. 1999;9(1):47–56.

    Article  PubMed  CAS  Google Scholar 

  30. Manconi M, Nácher A, Merino V, Merino-Sanjuan M, Manca ML, Mura C, et al. Improving oral bioavailability and pharmacokinetics of liposomal metformin by glycerolphosphate-chitosan microcomplexation. AAPS PharmSciTech. 2013;14:485–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Alexey Krasnoslobodtsev (UNMC) for the AFM analysis and Dr. Raj Suryanarayanan (University of Minnesota) for the XRD analysis.

Funding

Financial support from the School of Pharmacy and Health Professions is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alekha K. Dash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhujbal, S., Dash, A.K. Metformin-Loaded Hyaluronic Acid Nanostructure for Oral Delivery. AAPS PharmSciTech 19, 2543–2553 (2018). https://doi.org/10.1208/s12249-018-1085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1085-1

KEY WORDS

Navigation