Skip to main content
Log in

The Shielding Effect of Microcrystalline Cellulose on Drug Nanocrystal Particles During Compaction

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

To elucidate the compaction behavior of drug nanocrystals based composite particles (NP) during tabletting, the compaction behavior of binary mixtures of microcrystalline cellulose (MCC) and nanocrystal particles was investigated. The force-displacement correlation of mixtures containing different ratios of MCC and micronized NP was studied in order to explain the nature on densification of NP during compaction, and the resultant compaction curves (pressure as function of in-die thickness) were systemically analyzed to elucidate the most important mechanisms of volume reduction for MCC and NP in different stages of compaction. The results showed that the close compaction of individual MCC was relatively quickly achieved, and the drug NP particles could slide into the intrinsic void spaces between MCC microparticles. This was the reason that the particles size of MCC used in this study was significantly larger compared to that of drug NP. This interstitial rearrangement phenomenon of NP occurred on a typical time scale and was strongly dependent on the speed of compaction. This migration behavior occurred on void spaces of MCC inter-particles might be identified as an elastic stress relaxation mechanism and be helpful to dissolution of NP. MCC can effectively shield the NP from significant aggregation during compaction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. Sharma P, Denny WA, Garg S. Effect of wet milling process on the solid state of indomethacin and simvastatin. Int J Pharm. 2009;380:40–8.

    Article  PubMed  CAS  Google Scholar 

  2. Gahoi S, Jain GK, Tripathi R, Pandey SK, Anwar M, Warsi MH, et al. Enhanced antimalarial activity of lumefantrine nanopowder prepared by wet-milling DYNO MILL technique. Colloid Surf B. 2012;95:16–22.

    Article  CAS  Google Scholar 

  3. Gebremedhin S, Singh A, Koons S, Bernt W, Konopka K, Duzgunes N. Gene delivery to carcinoma cells via novel non-viral vectors: nanoparticle tracking analysis and suicide gene therapy. Eur J Pharm Biopharm. 2014;60:72–9.

    CAS  Google Scholar 

  4. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18:113–20.

    Article  PubMed  CAS  Google Scholar 

  5. Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62:3–16.

    Article  PubMed  CAS  Google Scholar 

  6. Yue PF, Li Y, Wan J, Wang Y, Yang M, Zhu WF, et al. Process optimization and evaluation of novel baicalin solid nanocrystals. Int J Nanomedicine. 2013;8:2961–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wei S, Ma Y, Luo J, He X, Yue P, Guan Z, et al. Hydroxypropylcellulose as matrix carrier for novel cage-like microparticles prepared by spray-freeze-drying technology. Carbohydr Polym. 2017;157:953–61.

    Article  PubMed  CAS  Google Scholar 

  8. Ma YQ, Zhang ZZ, Li G, Zhang J, Xiao HY, Li XF. Solidification drug nanosuspensions into nanocrystals by freeze-drying: a case study with ursodeoxycholic acid. Pharm Dev Technol. 2016;21(2):180–8.

    Article  PubMed  CAS  Google Scholar 

  9. Basa S, Muniyappan T, Karatgi P, Prabhu R, Pillai R. Production and in vitro characterization of solid dosage form incorporating drug nanoparticles. Drug Dev Ind Pharm. 2008;34(11):1209–18.

    Article  PubMed  Google Scholar 

  10. Nekkanti V, Pillai R, Venkateshwarlu V, Harisudhan T. Development and characterization of solid oral dosage form incorporating candesartan nanoparticles. Pharm Dev Technol. 2009;14(3):290–8.

    Article  PubMed  CAS  Google Scholar 

  11. Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364:64–75.

    Article  PubMed  CAS  Google Scholar 

  12. Yue PF, Li G, Dan JX, Wu ZF, Wang CH, Zhu WF, et al. Study on formability of solid nanosuspensions during solidification: II novel roles of freezing stress and cryoprotectant property. Int J Pharm. 2014;475:35–48.

    Article  PubMed  CAS  Google Scholar 

  13. Alaei S, Ghasemian E, Vatanara A. Spray drying of cefixime nanosuspension to form stabilized and fast dissolving powder. Powder Technol. 2016;288:241–8.

    Article  CAS  Google Scholar 

  14. Tan EH, Parmentier J, Low A, Möschwitzer JP. Downstream drug product processing of itraconazole nanosuspension: factors influencing tablet material properties and dissolution of compacted nanosuspension-layered sugar beads. Int J Pharm. 2017;532(1):131–8.

    Article  PubMed  CAS  Google Scholar 

  15. Nsor-Atindana J, Chen M, Goff HD, Zhong F, Sharif HR, Li Y. Functionality and nutritional aspects of microcrystalline cellulose in food. Carbohydr Polym. 2017;172:159–74.

    Article  PubMed  CAS  Google Scholar 

  16. Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment—a review. Int J Pharm. 2014;473(1–2):64–72.

    Article  PubMed  CAS  Google Scholar 

  17. Bolhuis GK, Armstrong NA. Excipients for direct compaction-an update. Pharm Dev Technol. 2006;11:111–24.

    Article  PubMed  CAS  Google Scholar 

  18. Jivraj II, Martini LG, Thomson CM. An overview of the different excipients useful for the direct compression of tablets. Pharm Sci Technol Today. 2000;3(2):58–63.

    Article  PubMed  CAS  Google Scholar 

  19. Ferrari F, Bertoni M, Bonferoni MC, Rossi S, Caramella C, Nyström C. Investigation on bonding and disintegration properties of pharmaceutical materials. Int J Pharm. 1996;136:71–9.

    Article  CAS  Google Scholar 

  20. Patel S, Kaushal AM, Bansal AK. Compression physics in the formulation development of tablets. Crit Rev Ther Drug. 2006;23:1–65.

    Article  CAS  Google Scholar 

  21. Saigal N, Baboota S, Ahuja A, Ali J. Microcrystalline cellulose as a versatile excipient in drug research. J Young Pharm. 2009;1:6–12.

    Article  CAS  Google Scholar 

  22. Xu J, Ma Y, Xie Y, Chen Y, Liu Y, Yue P, et al. Design and evaluation of novel solid self-nanodispersion delivery system for andrographolide. AAPS Pharm Sci Tech. 2017;18(5):1572–84.

    Article  CAS  Google Scholar 

  23. Wang T, Liu B, Zhang W, Wilson B, Hong JS. Andrographolide reduces inflammation-mediated dopaminergic neurodegeneration in mesencephalic neuron-glia cultures by inhibiting microglial activation. J Pharmacol Exp Therapeut. 2004;308:975–83.

    Article  CAS  Google Scholar 

  24. Shen Y, Chen C, Chiou W. Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect. Br J Pharmacol. 2002;135:399–406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Panossian A, Hovhannisyan A, Mamikonyan G, Abrahamian H, Hambardzumyan E, Gabrielian E, et al. Pharmacokinetic and oral bioavailability of andrographolide from Andrographis paniculata fixed combination Kan Jang in rats and human. Phytomedicine. 2007;7(5):351–64.

    Article  Google Scholar 

  26. Ye L, Wang T, Tang L, Liu W, Yang Z, Zhou J, et al. Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by P-glycoprotein. J Pharm Sci. 2011;100:5007–17.

    Article  PubMed  CAS  Google Scholar 

  27. Dan J, Ma Y, Yue P, Xie Y, Zheng Q, Hu P, et al. Microcrystalline cellulose-carboxymethyl cellulose sodium as an effective dispersant for drug nanocrystals: a case study. Carbohydr Polym. 2016;136:499–506.

    Article  PubMed  CAS  Google Scholar 

  28. Koynov A, Romanski F, Cuitiño AM. Effects of particle size disparity on the compaction behavior of binary mixtures of pharmaceutical powders. Powder Technol. 2013;236:5–11.

    Article  CAS  Google Scholar 

  29. Chen Y, Liu Y, Xu J, Xie J, Ma Y, Yue PF, et al. Design and evaluation of nanocomposite microparticles to enhance dissolution and oral bioavailability of andrographolide. Powder Technol. 2018;323:219–29.

    Article  CAS  Google Scholar 

  30. Amin M, Albawani SM, Amjad MW. A comparative study of the compaction properties of binary and bilayer tablets of direct compression excipients. Trop J Pharm Res. 2012;11(13):585–94.

    Google Scholar 

  31. Higuchi T, Arnold RD, Tucker SJ, Buss LW. The physics of tablet compression. I A preliminary report. J Pharm Sci. 2010;41(2):93–6.

    Article  Google Scholar 

  32. Salem MS, Fell JT, Alkaysi HN, Muhsin NA. Stress relaxation of mixtures of pharmaceutical powders. Chem Eng J. 2014;239(4):68–74.

    Google Scholar 

  33. Hellrup J, Nordström J, Mahlin D. Powder compression mechanics of spray-dried lactose nanocomposites. Int J Pharm. 2017;518(1–2):1–10.

    Article  PubMed  CAS  Google Scholar 

  34. Liu LX, Marziano I, Bentham AC, Litsterc JD, White ET, Howes T. Influence of particle size on the direct compression of ibuprofen and its binary mixtures. Powder Technol. 2013;240:66–73.

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial support from the Scientific Research Foundation for the National Natural Science Foundation of China (No. 81560656, 81760715), and Fund of the Natural Science Fund of Jiangxi Province (No. 20161BAB205221) and the excellent young scientists of Jiangxi Province (20162BCB23033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Yue.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xiao, H., Xie, J. et al. The Shielding Effect of Microcrystalline Cellulose on Drug Nanocrystal Particles During Compaction. AAPS PharmSciTech 19, 2488–2498 (2018). https://doi.org/10.1208/s12249-018-1077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1077-1

KEY WORDS

Navigation