Skip to main content

Advertisement

Log in

Anti-inflammatory Effect from a Hydrogel Containing Nanoemulsified Copaiba oil (Copaifera multijuga Hayne)

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Copaiba oil is used as a popular medicine in the Amazonian forest region, especially due to its anti-inflammatory properties. In this paper, we describe the formulation of hydrogel containing copaiba oil nanoemulsions (with positive and negative charges), its skin permeation, and its anti-inflammatory activity in two in vivo models: mouse ear edema and rat paw edema. Three hydrogels were tested (Carbopol®, hydroxyethylcellulose and chitosan), but only Carbopol® and hydroxyethylcellulose hydrogels presented good stability and did not interfere with the nanoemulsions droplet size and polydispersity index. In skin permeation assay, both formulations, positively charged nanoemulsion (PCN) and negatively charged nanoemulsion (NCN), presented a high retention in epidermis (9.76 ± 2.65 μg/g and 7.91 ± 2.46 μg/cm2, respectively) followed by a smaller retention in the dermis (2.43 ± 0.91 and 1.95 ± 0.56 μg/cm2, respectively). They also presented permeation to the receptor fluid (0.67 ± 0.22 and 1.80 ± 0.85 μg/cm2, respectively). In addition, anti-inflammatory effect was observed to NCN and PCN with edema inhibitions of 69 and 67% in mouse ear edema and 32 and 72% in rat paw edema, respectively. Histological cuts showed the decrease of inflammatory factors, such as dermis and epidermis hyperplasia and inflammatory cells infiltration, confirming the anti-inflammatory effect from both copaiba oil nanoemulsions incorporated in hydrogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. El Asbahani A, Miladi K, Badri W, Sala M, Addi EHA, Casabianca H, et al. Essential oils: from extraction to encapsulation. Int J Pharm. 2015;483:220–43.

    Article  CAS  PubMed  Google Scholar 

  2. Xavier-Junior FH, Silva KGH, Farias IEG, Morais ARV, Alencar EN, Araujo IB, et al. Prospective study for the development of emulsion systems containing natural oil products. J Drug Deliv Sci Technol. 2012;22:367–72.

    Article  CAS  Google Scholar 

  3. Veiga-Junior VF, Rosas EC, Carvalho MV, Henriques MGMO, Pinto AC. Chemical composition and anti-inflammatory activity of copaiba oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne—a comparative study. J Ethnopharmacol. 2007;112:248–54.

    Article  CAS  PubMed  Google Scholar 

  4. Veiga-Junior VF, Zunino L, Patitucci ML, Pinto AC, Calixto JB. The inhibition of paw oedema formation caused by the oil of Copaifera multijuga Hayne and its fractions. J Pharm Pharmacol. 2006;58:1405–10.

    Article  PubMed  Google Scholar 

  5. Fernandes ES, Passos GF, Medeiros R, da Cunha FM, Ferreira J, Campos MM, et al. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur J Pharmacol. 2007;569:228–36.

    Article  CAS  PubMed  Google Scholar 

  6. Gertsch J, Leonti M, Raduner S, Racz I, Chen J-Z, Xie X-Q, et al. Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci. 2008;105:9099–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Dias DO, Colombo M, Kelmann RG, Kaiser S, Lucca LG, Teixeira HF, et al. Optimization of copaiba oil-based nanoemulsions obtained by different preparation methods. Ind Crop Prod. 2014;59:154–62.

    Article  CAS  Google Scholar 

  8. Dias DDO, Colombo M, Kelmann RG, De Souza TP, Bassani VL, Teixeira HF, et al. Optimization of headspace solid-phase microextraction for analysis of β-caryophyllene in a nanoemulsion dosage form prepared with copaiba (Copaifera multijuga Hayne) oil. Anal Chim Acta. 2012;721:79–84.

    Article  CAS  Google Scholar 

  9. Lucca LG, de Matos SP, Borille BT, Dias DO, Teixeira HF, Veiga-Junior VF, et al. Determination of β-caryophyllene skin permeation/retention from crude copaiba oil (Copaifera multijuga Hayne) and respective oil-based nanoemulsion using a novel HS-GC/MS method. J Pharm Biomed Anal. 2015;104:144–8.

    Article  CAS  PubMed  Google Scholar 

  10. Lucca LG, de Matos SP, de Mattos CB, Teixeira HF, Limberger RP, Veiga-Junior VF, et al. Nanoemulsification potentiates in vivo antiedematogenic effect of copaiba oil. J Biomed Nanotechnol. 2017;13:1-8.

  11. Peppas N. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.

    Article  CAS  PubMed  Google Scholar 

  12. Mou D, Chen H, Du D, Mao C, Wan J, Xu H, et al. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int J Pharm. 2008;353:270–6.

    Article  CAS  PubMed  Google Scholar 

  13. Cascon V, Gilbert B. Characterization of the chemical composition of oleoresins of Copaifera guianensis Desf., Copaifera duckei Dwyer and Copaifera multijuga Hayne. Phytochemistry. 2000;55:773–8.

    Article  CAS  PubMed  Google Scholar 

  14. Veiga-Junior VF, Pinto AC. The Copaifera L. genus. Quim Nova. 2002;25:273–86.

    Article  CAS  Google Scholar 

  15. Rabinovich-Guilatt L, Couvreur P, Lambert G, Goldstein D, Benita S, Dubernet C. Extensive surface studies help to analyse zeta potential data: the case of cationic emulsions. Chem Phys Lipids. 2004;131:1–13.

    Article  CAS  PubMed  Google Scholar 

  16. Souto EB, Wissing SA, Barbosa CM, Mu RH. Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur J Pharm Biopharm. 2004;58:83–90.

    Article  CAS  PubMed  Google Scholar 

  17. Joshi M, Patravale V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm. 2008;346:124–32.

    Article  CAS  PubMed  Google Scholar 

  18. Dillen K, Weyenberg W, Vandervoort J, Ludwig A. The influence of the use of viscosifying agents as dispersion media on the drug release properties from PLGA nanoparticles. Eur J Pharm Biopharm. 2004;58:539–49.

    Article  CAS  PubMed  Google Scholar 

  19. Beck R, Guterres S, Pohlmann A, editors. Nanocosmetics and nanomedicines. 1st ed. Berlin: Springer Berlin Heidelberg; 2011.

    Google Scholar 

  20. Guerra-Rosas MI, Morales-Castro J, Ochoa-Martínez LA, Salvia-Trujillo L, Martín-Belloso O. Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocoll. 2016;52:438–46.

    Article  CAS  Google Scholar 

  21. Moraes-Lovison M, Marostegan LFP, Peres MS, Menezes IF, Ghiraldi M, Rodrigues RAF, et al. Nanoemulsions encapsulating oregano essential oil: production, stability, antibacterial activity and incorporation in chicken pâté. LWT—Food Sci Technol. 2017;77:233–40.

    CAS  Google Scholar 

  22. Guerra-Rosas MI, Morales-Castro J, Cubero-Márquez MA, Salvia-Trujillo L, Martín-Belloso O. Antimicrobial activity of nanoemulsions containing essential oils and high methoxyl pectin during long-term storage. Food Control. 2017;77:131–8.

    Article  CAS  Google Scholar 

  23. Junyaprasert VB, Teeranachaideekul V, Souto EB, Boonme P, Müller RH. Q10-loaded NLC versus nanoemulsions: stability, rheology and in vitro skin permeation. Int J Pharm. 2009;377:207–14.

    Article  CAS  PubMed  Google Scholar 

  24. Khurana S, Jain NK, Bedi PMS. Nanoemulsion based gel for transdermal delivery of meloxicam: physico-chemical, mechanistic investigation. Life Sci. 2013;92:383–92.

    Article  CAS  PubMed  Google Scholar 

  25. Al-Subaie MM, Hosny KM, El-Say KM, Ahmed TA, Aljaeid BM. Utilization of nanotechnology to enhance percutaneous absorption of acyclovir in the treatment of herpes simplex viral infections. Int J Nanomedicine. 2015;10:3973–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hathout RM, Elshafeey AH. Development and characterization of colloidal soft nano-carriers for transdermal delivery and bioavailability enhancement of an angiotensin II receptor blocker. Eur J Pharm Biopharm [Internet]. 2012;82:230–40. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0939641112002275

    Article  CAS  Google Scholar 

  27. Young JM, Spires DS, Bedford CJ, Wagner BM, Ballaron SJ, De Young LM. The mouse ear inflammatory response to topical arachidonic acid. J Invest Dermatol. 1984;82:367–71.

    Article  CAS  PubMed  Google Scholar 

  28. Sadeghi H, Zarezade V, Sadeghi H, Toori MA, Barmak MJ, Azizi A, et al. Anti-inflammatory activity of Stachys pilifera Benth. Iran Red Crescent Med J. 2014;16:1–8.

    CAS  Google Scholar 

  29. Kantor TG. Ketoprofen: a review of its pharmacologic and clinical properties. Pharmacother J Hum Pharmacol Drug Ther [Internet]. 1986;6:93–102. Available from: http://doi.wiley.com/10.1002/j.1875-9114.1986.tb03459.x

    Article  CAS  Google Scholar 

  30. Rundfeldt C, Steckel H, Sörensen T, Wlaź P. The stable cyclic adenosine monophosphate analogue, dibutyryl cyclo-adenosine monophosphate (bucladesine), is active in a model of acute skin inflammation. Arch Dermatol Res. 2012;304:313–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ishii K, Motoyoshi S, Kawata J, Nakagawa H, Takeyama K. A useful method for differential evaluation of anti-inflammatory effects due to cyclooxygenase and 5-lipoxygenase inhibitions in mice. Jpn J Pharmacol. 1994;65:297–303.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.G.L. thanks CAPES/Brazil for the scholarship.

Funding

Authors thank CAPES/Brazil (Nanobiotec Network Grant 902/2009 and PROCAD Grant 552457/2011-6) and CNPq/Brazil (Grant 453927/2014-9) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letícia S. Koester.

Ethics declarations

The Animal Use Ethics Committee from Federal University of Rio Grande do Sul approved this study (protocol number: 25866).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucca, L.G., de Matos, S.P., Kreutz, T. et al. Anti-inflammatory Effect from a Hydrogel Containing Nanoemulsified Copaiba oil (Copaifera multijuga Hayne). AAPS PharmSciTech 19, 522–530 (2018). https://doi.org/10.1208/s12249-017-0862-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0862-6

KEY WORDS

Navigation