Skip to main content
Log in

Cationic Niosomes for Enhanced Skin Immunization of Plasmid DNA-Encoding Ovalbumin via Hollow Microneedles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of the present study was to evaluate the use of cationic niosomes composed of Span20:cholesterol:cationic lipid (N 1,N 1-dimyristeroyloxyethyl-spermine) at the molar ratio of 2.5:2.5:0.5 mM combined with hollow microneedle (MN) devices for in vivo skin immunization of plasmid DNA-encoding ovalbumin (pOVA). The results revealed that using hollow MNs with cationic niosomes for pOVA penetration successfully induced both humoral and cell-mediated immune responses including immunoglobulin G (IgG) antibody responses, interleukin-4 (IL-4), and interferon gamma (IFN-γ) cytokine secretion. When using hollow MNs with cationic niosome/pOVA complexes, the immune response was superior to naked pOVA, which testifies the increased amount of IgG antibody responses and cytokine secretion. In comparison with conventional subcutaneous (SC) injections, using hollow MNs with cationic niosome/pOVA complexes induced a higher level of both IgG immune response and cytokine release. Moreover, a group of mice immunized with hollow MNs did not show infection or bleeding on the skin. Consequently, targeted delivery of pOVA using cationic niosomes combined with hollow MNs might prove a promising vaccination method for skin vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat Rev Genet. 2008;9(10):776–88. doi:10.1038/nrg2432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev. 2011;239(1):62–84. doi:10.1111/j.1600-065X.2010.00980.x.

    Article  CAS  PubMed  Google Scholar 

  3. Jacobson RM, Swan A, Adegbenro A, Ludington SL, Wollan PC, Poland GA. Making vaccines more acceptable—methods to prevent and minimize pain and other common adverse events associated with vaccines. Vaccine. 2001;19(17–19):2418–27. doi:10.1016/S0264-410X(00)00466-7.

    Article  CAS  PubMed  Google Scholar 

  4. Bal SM, Ding Z, van Riet E, Jiskoot W, Bouwstra JA. Advances in transcutaneous vaccine delivery: do all ways lead to Rome? J Control Release. 2010;148(3):266–82. doi:10.1016/j.jconrel.2010.09.018.

    Article  CAS  PubMed  Google Scholar 

  5. Glenn GM, Kenney RT, Ellingsworth LR, Frech SA, Hammond SA, Zoeteweij JP. Transcutaneous immunization and immunostimulant strategies: capitalizing on the immunocompetence of the skin. Expert Rev Vaccines. 2003;2(2):253–67. doi:10.1586/14760584.2.2.253.

    Article  CAS  PubMed  Google Scholar 

  6. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52. doi:10.1038/32588.

    Article  CAS  PubMed  Google Scholar 

  7. Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol. 2004;4(3):211–22. doi:10.1038/nri1310.

    Article  CAS  PubMed  Google Scholar 

  8. Romani N, Clausen BE, Stoitzner P. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev. 2010;234(1):120–41. doi:10.1111/j.0105-2896.2009.00886.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Macri C, Dumont C, Johnston AP, Mintern JD. Targeting dendritic cells: a promising strategy to improve vaccine effectiveness. Clin Transl Immunology. 2016;5(3):e66. doi:10.1038/cti.2016.6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yoshida A, Nagata T, Uchijima M, Higashi T, Koide Y. Advantage of gene gun-mediated over intramuscular inoculation of plasmid DNA vaccine in reproducible induction of specific immune responses. Vaccine. 2000;18(17):1725–9. doi:10.1016/S0264-410X(99)00432-6.

    Article  CAS  PubMed  Google Scholar 

  11. Ren S, Li M, Smith JM, DeTolla LJ, Furth PA. Low-volume jet injection for intradermal immunization in rabbits. BMC Biotechnol. 2002;2:10. doi:10.1186/1472-6750-2-10.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Haensler J, Verdelet C, Sanchez V, Girerd-Chambaz Y, Bonnin A, Trannoy E, et al. Intradermal DNA immunization by using jet-injectors in mice and monkeys. Vaccine. 1999;17(7–8):628–38. doi:10.1016/S0264-410X(98)00242-4.

    Article  CAS  PubMed  Google Scholar 

  13. Ottensmeier C, Low L, Mander A, Tjelle T, Campos-Perez J, Williams T, et al. DNA fusion gene vaccination, delivered with or without in vivo electroporation: a potent and safe strategy for inducing antitumor immune responses in prostate cancer. Cancer Res. 2014;68(9 Supplement):2843. doi:10.1016/S1525-0016(16)39703-9.

    Google Scholar 

  14. Hooper JW, Golden JW, Ferro AM, King AD. Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine. 2007;25(10):1814–23. doi:10.1016/j.vaccine.2006.11.017.

    Article  CAS  PubMed  Google Scholar 

  15. Rosati M, Valentin A, Jalah R, Patel V, von Gegerfelt A, Bergamaschi C, et al. Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation. Vaccine. 2008;26(40):5223–9. doi:10.1016/j.vaccine.2008.03.090.

    Article  CAS  PubMed  Google Scholar 

  16. Pearton M, Saller V, Coulman SA, Gateley C, Anstey AV, Zarnitsyn V, et al. Microneedle delivery of plasmid DNA to living human skin: formulation coating, skin insertion and gene expression. J Control Release. 2012;160(3):561–9. doi:10.1016/j.jconrel.2012.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yan G, Arelly N, Farhan N, Lobo S, Li H. Enhancing DNA delivery into the skin with a motorized microneedle device. Eur J Pharm Sci. 2014;52:215–22. doi:10.1016/j.ejps.2013.11.015.

    Article  CAS  PubMed  Google Scholar 

  18. Song JM, Kim YC, Eunju O, Compans RW, Prausnitz MR, Kang SM. DNA vaccination in the skin using microneedles improves protection against influenza. Mol Ther. 2012;20(7):1472–80. doi:10.1038/mt.2012.69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prausnitz MR, Mikszta JA, Cormier M, Andrianov AK. Microneedle-based vaccines. Curr Top Microbiol Immunol. 2009;333:369–93. doi:10.1007/978-3-540-92165-3_18.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bal SM, Caussin J, Pavel S, Bouwstra JA. In vivo assessment of safety of microneedle arrays in human skin. Eur J Pharm Sci. 2008;35(3):193–202. doi:10.1016/j.ejps.2008.06.016.

    Article  CAS  PubMed  Google Scholar 

  21. van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release. 2012;161(2):645–55. doi:10.1016/j.jconrel.2012.01.042.

    Article  PubMed  Google Scholar 

  22. Indermun S, Luttge R, Choonara YE, Kumar P, du Toit LC, Modi G, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014;185:130–8. doi:10.1016/j.jconrel.2014.04.052.

    Article  CAS  PubMed  Google Scholar 

  23. Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581–7. doi:10.1016/j.addr.2003.10.023.

    Article  CAS  PubMed  Google Scholar 

  24. Tuan-Mahmood TM, McCrudden MT, Torrisi BM, McAlister E, Garland MJ, Singh TR, et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50(5):623–37. doi:10.1016/j.ejps.2013.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sullivan SP, Koutsonanos DG, del Pilar MM, Lee JW, Zarnitsyn V, Choi S-O, et al. Dissolving polymer microneedle patches for influenza vaccination. Nat Med. 2010;16(8):915–20. doi:10.1038/nm.2182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim YC, Quan FS, Yoo DG, Compans RW, Kang SM, Prausnitz MR. Improved influenza vaccination in the skin using vaccine coated microneedles. Vaccine. 2009;27(49):6932–8. doi:10.1016/j.vaccine.2009.08.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim YC, Song JM, Lipatov AS, Choi SO, Lee JW, Donis RO, et al. Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch. Eur J Pharm Biopharm. 2012;81(2):239–47. doi:10.1016/j.ejpb.2012.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van der Maaden K, Trietsch SJ, Kraan H, Varypataki EM, Romeijn S, Zwier R, et al. Novel hollow microneedle technology for depth-controlled microinjection-mediated dermal vaccination: a study with polio vaccine in rats. Pharm Res. 2014;31(7):1846–54. doi:10.1007/s11095-013-1288-9.

    PubMed  Google Scholar 

  29. Levin Y, Kochba E, Kenney R. Clinical evaluation of a novel microneedle device for intradermal delivery of an influenza vaccine: are all delivery methods the same? Vaccine. 2014;32(34):4249–52. doi:10.1016/j.vaccine.2014.03.024.

    Article  CAS  PubMed  Google Scholar 

  30. Serikawa T, Suzuki N, Kikuchi H, Tanaka K, Kitagawa T. A new cationic liposome for efficient gene delivery with serum into cultured human cells: a quantitative analysis using two independent fluorescent probes. Biochim Biophys Acta. 2000;1467(2):419–30. doi:10.1016/S0005-2736(00)00239-X.

    Article  CAS  PubMed  Google Scholar 

  31. Opanasopit P, Leksantikul L, Niyomtham N, Rojanarata T, Ngawhirunpat T, Yingyongnarongkul BE. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures. Pharm Dev Technol. 2017;22(3):350–9. doi:10.3109/10837450.2015.1125925.

    Article  CAS  PubMed  Google Scholar 

  32. Pamornpathomkul B, Rojanarata T, Opanasopit P, Ngawhirunpat T. Enhancement of skin permeation and skin immunization of ovalbumin antigen via microneedles. AAPS PharmSciTech. 2017; doi:10.1208/s12249-017-0730-4.

  33. Niyomtham N, Apiratikul N, Suksen K, Opanasopit P, Yingyongnarongkul BE. Synthesis and in vitro transfection efficiency of spermine-based cationic lipids with different central core structures and lipophilic tails. Bioorg Med Chem Lett. 2015;25(3):496–503. doi:10.1016/j.bmcl.2014.12.043.

    Article  CAS  PubMed  Google Scholar 

  34. Paecharoenchai O, Niyomtham N, Ngawhirunpat T, Rojanarata T, Yingyongnarongkul BE, Opanasopit P. Cationic niosomes composed of spermine-based cationic lipids mediate high gene transfection efficiency. J Drug Target. 2012;20(9):783–92. doi:10.3109/1061186x.2012.716846.

    Article  CAS  PubMed  Google Scholar 

  35. Paecharoenchai O, Niyomtham N, Leksantikul L, Ngawhirunpat T, Rojanarata T, Yingyongnarongkul BE, et al. Nonionic surfactant vesicles composed of novel spermine-derivative cationic lipids as an effective gene carrier in vitro. AAPS PharmSciTech. 2014;15(3):722–30. doi:10.1208/s12249-014-0095-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pamornpathomkul B, Wongkajornsilp A, Laiwattanapaisal W, Rojanarata T, Opanasopit P, Ngawhirunpat T. A combined approach of hollow microneedles and nanocarriers for skin immunization with plasmid DNA encoding ovalbumin. Int J Nanomedicine. 2017;12:885–98. doi:10.2147/ijn.s125945.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hengge UR, Dexling B, Mirmohammadsadegh A. Safety and pharmacokinetics of naked plasmid DNA in the skin: studies on dissemination and ectopic expression. J Invest Dermatol. 2001;116(6):979–82. doi:10.1046/j.1523-1747.2001.01341.x.

    Article  CAS  PubMed  Google Scholar 

  38. Hahn P, Scanlan E. Gene delivery into mammalian cells: an overview on existing approaches employed in vitro and in vivo. Top Curr Chem. 2010;296:1–13.

    Article  CAS  PubMed  Google Scholar 

  39. Chang-Ying Y, Chong Y, Yi-Yong Z, Zhong-Xu D. Electrochemical properties of niosomes modified au electrode and DNA recognition. Colloids Surf B Biointerfaces. 2008;67(2):179–82. doi:10.1016/j.colsurfb.2008.08.005.

    Article  Google Scholar 

  40. Matriano JA, Cormier M, Johnson J, Young WA, Buttery M, Nyam K, et al. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res. 2002;19(1):63–70. doi:10.1023/A:1013607400040.

    Article  CAS  PubMed  Google Scholar 

  41. Cormier M, Johnson B, Ameri M, Nyam K, Libiran L, Zhang DD, et al. Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release. 2004;97(3):503–11. doi:10.1016/j.jconrel.2004.04.003.

    Article  CAS  PubMed  Google Scholar 

  42. Widera G, Johnson J, Kim L, Libiran L, Nyam K, Daddona PE, et al. Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine. 2006;24(10):1653–64. doi:10.1016/j.vaccine.2005.09.049.

    Article  CAS  PubMed  Google Scholar 

  43. Liblau RS, Singer SM, McDevitt HO. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today. 1995;16(1):34–8. doi:10.1016/0167-5699(95)80068-9.

    Article  CAS  PubMed  Google Scholar 

  44. Curfs JH, Meis JF, Hoogkamp-Korstanje JA. A primer on cytokines: sources, receptors, effects, and inducers. Clin Microbiol Rev. 1997;10(4):742–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Constant SL, Bottomly K. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol. 1997;15:297–322. doi:10.1146/annurev.immunol.15.1.297.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Thailand Research Fund and the Golden Jubilee Ph.D. Program (grant number PHD/0232/2558), the National Vaccine Institute, and Silpakorn University Research and Development Institute for their financial support. The authors are very grateful to Professor Kenji Sugibayashi from the Faculty of Pharmaceutical Sciences, Josai University for providing the MNs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praneet Opanasopit.

Ethics declarations

Declaration of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pamornpathomkul, B., Niyomtham, N., Yingyongnarongkul, BE. et al. Cationic Niosomes for Enhanced Skin Immunization of Plasmid DNA-Encoding Ovalbumin via Hollow Microneedles. AAPS PharmSciTech 19, 481–488 (2018). https://doi.org/10.1208/s12249-017-0855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0855-5

Keywords

Navigation