Skip to main content
Log in

Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Optical coherence tomography freeze-drying microscopy (OCT-FDM) is a novel technique that allows the three-dimensional imaging of a drug product during the entire lyophilization process. OCT-FDM consists of a single-vial freeze dryer (SVFD) affixed with an optical coherence tomography (OCT) imaging system. Unlike the conventional techniques, such as modulated differential scanning calorimetry (mDSC) and light transmission freeze-drying microscopy, used for predicting the product collapse temperature (Tc), the OCT-FDM approach seeks to mimic the actual product and process conditions during the lyophilization process. However, there is limited understanding on the application of this emerging technique to the design of the lyophilization process. In this study, we investigated the suitability of OCT-FDM technique in designing a lyophilization process. Moreover, we compared the product quality attributes of the resulting lyophilized product manufactured using Tc, a critical process control parameter, as determined by OCT-FDM versus as estimated by mDSC. OCT-FDM analysis revealed the absence of collapse even for the low protein concentration (5 mg/ml) and low solid content formulation (1%w/v) studied. This was confirmed by lab scale lyophilization. In addition, lyophilization cycles designed using Tc values obtained from OCT-FDM were more efficient with higher sublimation rate and mass flux than the conventional cycles, since drying was conducted at higher shelf temperature. Finally, the quality attributes of the products lyophilized using Tc determined by OCT-FDM and mDSC were similar, and product shrinkage and cracks were observed in all the batches of freeze-dried products irrespective of the technique employed in predicting Tc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. LaTorre-Snyder M. Lyophilization: The basics. Pharmaceutical Processing. 2017. www.pharmpro.com/article/2017/3/lyophilization-basics.

  2. Werk T, Ludwig IS, Luemkemann J, Mahler H-C, Huwyler J, Hafner M. Technology, applications, and process challenges of dual chamber systems. J Pharm Sci. 2016;105(1):4–9.

    Article  CAS  PubMed  Google Scholar 

  3. Rambhatla S, Obert JP, Luthra S, Bhugra C, Pikal MJ. Cake shrinkage during freeze drying: a combined experimental and theoretical study. Pharm Dev Technol. 2005;10(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  4. Bellows RJ, King CJ. Freeze-drying of aqueous solutions: maximum allowable operating temperature. Cryobiology. 1972;9(6):559–61.

    Article  CAS  PubMed  Google Scholar 

  5. Her LM, Nail SL. Measurement of glass transition temperatures of freeze-concentrated solutes by differential scanning calorimetry. Pharm Res. 1994;11(1):54–9.

    Article  CAS  PubMed  Google Scholar 

  6. Adams GD, Irons LI. Some implications of structural collapse during freeze-drying using Erwinia caratovora L-asparaginase as a model. J Chem Technol Biotechnol. 1993;58(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  7. Passot S, Fonseca F, Barbouche N, Marin M, Alarcon-Lorca M, Rolland D, et al. Effect of product temperature during primary drying on the long-term stability of lyophilized proteins. Pharm Dev Technol. 2007;12(6):543–53.

    Article  CAS  PubMed  Google Scholar 

  8. Chang BS, Beauvais RM, Dong A, Carpenter JF. Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: glass transition and protein conformation. Arch Biochem Biophys. 1996;331(2):249–58.

    Article  CAS  PubMed  Google Scholar 

  9. Tang X, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;21(2):191–200.

    Article  CAS  PubMed  Google Scholar 

  10. Carpenter JF, Pikal MJ, Chang BS, Randolph TW. Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res. 1997;14(8):969–75.

    Article  CAS  PubMed  Google Scholar 

  11. MacKenzie AP. Collapse during freeze drying—qualitative and quantitative aspects. In: Goldblith SA, Rey L, Rothmayr WW, editors. Freeze Drying and Advanced Food Technology. London: Academic Press. 1975. P. 277–307.

  12. Pikal MJ. Use of laboratory data in freeze drying process design: heat and mass transfer coefficients and the computer simulation of freeze drying. J Parenter Sci Technol Publ Parenter Drug Assoc. 1985;39(3):115–39.

    CAS  Google Scholar 

  13. Meister E, Gieseler H. Freeze-dry microscopy of protein/sugar mixtures: drying behavior, interpretation of collapse temperatures and a comparison to corresponding glass transition data. J Pharm Sci. 2009;98(9):3072–87.

    Article  CAS  PubMed  Google Scholar 

  14. Pikal MJ, Shah S. The collapse temperature in freeze-drying—dependence on measurement methodology and rate of water removal from the glassy phase. Int J Pharm. 1990;62(2–3):165–86.

    Article  CAS  Google Scholar 

  15. Colandene JD, Maldonado LM, Creagh AT, Vrettos JS, Goad KG, Spitznagel TM. Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent. J Pharm Sci. 2007;96(6):1598–608.

    Article  CAS  PubMed  Google Scholar 

  16. Johnson RLL. Freeze-drying protein formulations above their collapse temperatures: possible issues and concerns. Am Pharm Rev. 2011;14(3):50–4.

    Google Scholar 

  17. Johnson RE, Oldroyd ME, Ahmed SS, Gieseler H, Lewis LM. Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations. J Pharm Sci. 2010;99(6):2863–73.

    Article  CAS  PubMed  Google Scholar 

  18. Greco K, Mujat M, Galbally-Kinney KL, Hammer DX, Ferguson RD, Iftimia N, et al. Accurate prediction of collapse temperature using optical coherence tomography-based freeze-drying microscopy. J Pharm Sci. 2013;102(6):1773–85.

  19. Mujat M, Greco K, Galbally-Kinney KL, Hammer DX, Ferguson RD, Iftimia N, et al. Optical coherence tomography-based freeze-drying microscopy. Biomed Opt Express. 2012;3(1):55–63.

  20. Srinivasan C, Siddiqui A, Korang-Yeboah M, Khan MA. Stability characterization and appearance of particulates in a lyophilized formulation of a model peptide hormone-human secretin. Int J Pharm. 2015;481(1–2):104–13.

    Article  CAS  PubMed  Google Scholar 

  21. Ullrich S, Seyferth S, Lee G. Measurement of shrinkage and cracking in lyophilized amorphous cakes. Part I: final-product assessment. J Pharm Sci. 2015;104(1):155–64.

    Article  CAS  PubMed  Google Scholar 

  22. Militello V, Casarino C, Emanuele A, Giostra A, Pullara F, Leone M. Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophys Chem. 2004;107(2):175–87.

    Article  CAS  PubMed  Google Scholar 

  23. Awotwe-Otoo D, Agarabi C, Keire D, Lee S, Raw A, Yu L, et al. Physicochemical characterization of complex drug substances: evaluation of structural similarities and differences of protamine sulfate from various sources. AAPS J. 2012;14(3):619–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kelly SM, Price NC. The application of circular dichroism to studies of protein folding and unfolding. Biochim Biophys Acta Protein Struct Mol Enzymol. 1997;1338(2):161–85.

    Article  CAS  Google Scholar 

  25. Pikal MJ, Shah S. The collapse temperature in freeze drying: dependence on measurement methodology and rate of water removal from the glassy phase. Int J Pharm. 1990;62(2):165–86.

    Article  CAS  Google Scholar 

  26. Overcashier DE, Patapoff TW, Hsu CC. Lyophilization of protein formulations in vials: investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse. J Pharm Sci. 1999;88(7):688–95.

    Article  CAS  PubMed  Google Scholar 

  27. Depaz RA, Pansare S, Patel SM. Freeze-drying above the glass transition temperature in amorphous protein formulations while maintaining product quality and improving process efficiency. J Pharm Sci. 2016;105(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  28. Searles J. Observation and implications of sonic water vapor flow during freeze-drying. Am Pharm Rev. 2004;7:58–69.

  29. Patel SM, Pikal MJ. Emerging freeze-drying process development and scale-up issues. AAPS PharmSciTech. 2011;12(1):372–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schersch K, Betz O, Garidel P, Muehlau S, Bassarab S, Winter G. Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins III: collapse during storage at elevated temperatures. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik. 2013;85(2):240–52.

    Article  CAS  Google Scholar 

  31. Carrasquillo KG, Sanchez C, Griebenow K. Relationship between conformational stability and lyophilization-induced structural changes in chymotrypsin. Biotechnol Appl Biochem. 2000;31(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  32. Griebenow K, Klibanov AM. Lyophilization-induced reversible changes in the secondary structure of proteins. Proc Natl Acad Sci U S A. 1995;92(24):10969–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schneid SC, Startzel PM, Lettner P, Gieseler H. Robustness testing in pharmaceutical freeze-drying: inter-relation of process conditions and product quality attributes studied for a vaccine formulation. Pharm Dev Technol. 2011;16(6):583–90.

    Article  CAS  PubMed  Google Scholar 

  34. Parker A, Rigby-Singleton S, Perkins M, Bates D, Le Roux D, Roberts CJ, et al. Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products. J Pharm Sci. 2010;99(11):4616–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Haiou Qu and Dr. Yifan Wang, ORISE Fellows at the Food and Drug Administration, for their contribution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maxwell Korang-Yeboah or Ashraf Muhammad.

Ethics declarations

Disclaimer

The opinions expressed in this work are only of the author and should not be construed to represent FDA’s views or policies.

Additional information

Editorial handling: M.R. Patrick

Electronic supplementary material

Below is the link to the electronic supplementary material.

(mp4 874 kb)

(mp4 980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korang-Yeboah, M., Srinivasan, C., Siddiqui, A. et al. Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality. AAPS PharmSciTech 19, 448–459 (2018). https://doi.org/10.1208/s12249-017-0848-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0848-4

KEY WORDS

Navigation