Skip to main content
Log in

Preparation and Evaluation of Diosgenin Nanocrystals to Improve Oral Bioavailability

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

Diosgenin (DSG), a well-known steroid sapogenin derived from Dioscorea nipponica Makino and Dioscorea zingiberensis Wright, has a variety of bioactivities. However, it shows low oral bioavailability due to poor aqueous solubility and strong hydrophobicity. The present study aimed to develop DSG nanocrystals to increase the dissolution and then improve the oral bioavailability and biopharmaceutical properties of DSG. DSG nanocrystals were prepared by the media milling method using a combination of pluronic F127 and sodium dodecyl sulfate as surface stabilizers. The physicochemical properties of the optimal DSG nanocrystals were characterized using their particle size distribution, morphology, differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy data, and solubility and dissolution test results. Pharmacokinetic studies of the DSG coarse suspension and its nanocrystals were performed in rats. The particle size and polydispersity index of DSG nanocrystals were 229.0 ± 3.7 nm and 0.163 ± 0.064, respectively. DSG retained its original crystalline state during the manufacturing process, and its chemical structure was not compromised by the nanonizing process. The dissolution rate of the freeze-dried DSG nanocrystals was significantly improved in comparison with the original DSG. The pharmacokinetic studies showed that the AUC0–72h and C max of DSG nanocrystals increased markedly (p < 0.01) in comparison with the DSG coarse suspension by about 2.55- and 2.01-fold, respectively. The use of optimized nanocrystals is a good and efficient strategy for oral administration of DSG due to the increased dissolution rate and oral bioavailability of DSG nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Fang YW, Zhao JJ, He YZ, Li BG, Xu CJ. Study on the structure of two water-insoluble steroidal saponins of Dioscorea. Acta Pharmaceutical Sinica. 1982;17:388–91.

    CAS  Google Scholar 

  2. Li YM, He BJ, Liu ZY, Jin GS. Study on the water-soluble active ingredient of Dioscorea. J Chin Med Univ. 1979;8:14–6.

    Google Scholar 

  3. Chen PS, Shih YW, Huang HC, Cheng HW. Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression. PLoS One. 2011;6:1–10.

    Google Scholar 

  4. He Z, Chen H, Li G, Zhu H, Gao Y, Zhang L, et al. Diosgenin inhibits the migration of human breast cancer MDA-MB-231 cells by suppressing Vav2 activity. Phytomedicine. 2014;21:871–6.

    Article  CAS  PubMed  Google Scholar 

  5. Wang WC, Liu SF, Chang WT, Shiue YL, Hsieh PF, Hung TJ, et al. The effects of diosgenin in the regulation of renal proximal tubular fibrosis. Exp Cell Res. 2014;323:255–62.

    Article  CAS  PubMed  Google Scholar 

  6. Uemura T, Hirai S, Mizoguchi N, Goto T, Lee JY, Taketani K, et al. Diosgenin present in fenugreek improves glucose metabolism by promoting adipocyte differentiation and inhibiting inflammation in adipose tissues. Mol Nutr Food Res. 2010;4:1596–608.

    Article  Google Scholar 

  7. Ebrahimi H, Badalzadeh R, Mohammadi M, Yousefi B. Diosgenin attenuates inflammatory response induced by myocardial reperfusion injury: role of mitochondrial ATP-sensitive potassium channels. J Physiol Biochem. 2014;70:425–32.

    Article  CAS  PubMed  Google Scholar 

  8. Kang TH, Moon E, Hong BN, Choi SZ, Son M, Park JH, et al. Diosgenin from Dioscorea nipponica ameliorates diabetic neuropathy by inducing nerve growth factor. Biol Pharm Bull. 2011;34:1493–8.

    Article  CAS  PubMed  Google Scholar 

  9. Accatino L, Pizarro M, Solís N, Koenig CS. Effects of diosgenin, a plant-derived steroid, on bile secretion and hepatocellular cholestasis induced by estrogens in the rat. Hepatology. 1998;28:129–40.

    Article  CAS  PubMed  Google Scholar 

  10. Gao M, Chen L, Yu H, Sun Q, Kou J, Yu B. Diosgenin down-regulates NF-κB p65/p50 and p38MAPK pathways and attenuates acute lung injury induced by lipopolysaccharide in mice. Int Immunopharmacol. 2013;15:240–5.

    Article  CAS  PubMed  Google Scholar 

  11. Tada Y, Kanda N, Haratake A, Tobiishi M, Uchiwa H, Watanabe S. Novel effects of diosgenin on skin aging. Steroids. 2009;74:504–11.

    Article  CAS  PubMed  Google Scholar 

  12. Ma HY, Zhao ZT, Wang LJ, Wang Y, Zhou QL, Wang BX. Comparative study on anti-hypercholesterolemia activity of diosgenin and total saponin of Discorea panthaica. Chin J Chinese Mater Med. 2002;27:528–31.

    CAS  Google Scholar 

  13. Okawara M, Hashimoto F, Todo H, Sugibayashi K, Tokudome Y. Effect of liquid crystals with cyclodextrin on the bioavailability of a poorly water-soluble compound, diosgenin, after its oral administration to rats. Int J Pharm. 2014;472:257–61.

    Article  CAS  PubMed  Google Scholar 

  14. Rytting E, Lentz KA, Chen XQ, Qian F, Vakatesh S. Aqueous and cosolvent solubility data for drug-like organic compounds. AAPS J. 2005;7:78–105.

    Article  Google Scholar 

  15. Okawara M, Tokudome Y, Todo H, Suqibayashi K, Hashimoto F. Enhancement of diosgenin distribution in the skin by cyclodextrin complexation following oral administration. Biol Pharm Bull. 2013;36:36–40.

    Article  CAS  PubMed  Google Scholar 

  16. Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47:3–19.

  17. Kesisoglou F, Panmai S, Wu Y. Nanosizing—oral formulation development a biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59:631–44.

    Article  CAS  PubMed  Google Scholar 

  18. Junghanns J, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3:295–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jacobs C, Müller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res. 2002;19:189–94.

    Article  CAS  PubMed  Google Scholar 

  20. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18:113–20.

    Article  CAS  PubMed  Google Scholar 

  21. Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Del Rev. 2011;63:427–40.

    Article  CAS  Google Scholar 

  22. Pu XH, Sun J, Han JH, Lian H, Zhang P, Yan ZT, et al. Nanosuspensions of 10-hydroxycamptothecin that can maintain high and extended supersaturation to enhance oral absorption: preparation, characterization and in vitro/in vivo evaluation. J Nanopart Res. 2013;15:1–13.

    Article  Google Scholar 

  23. Chan HK, Kwok PC. Production methods for nanodrug particles using the bottom-up approach. Adv Drug Del Rev. 2011;63:406–16.

    Article  CAS  Google Scholar 

  24. Rogers TL, Gillespie IB, Hitt JE, Fransen KL, Crowl CA, Tucker CJ, et al. Development and characterization of a scalable controlled precipitation process to enhance the dissolution of poorly water-soluble drugs. Pharm Res. 2004;21:2048–57.

    Article  CAS  PubMed  Google Scholar 

  25. Ward GH, Schultz RK. Process-induced crystallinity changes in albuterol sulfate and its effect on powder physical stability. Pharm Res. 1995;12:773–9.

    Article  CAS  PubMed  Google Scholar 

  26. Sharma P, Denny WA, Garg S. Effect of wet milling process on the solid state of indomethacin and simvastatin. Int J Pharm. 2009;380:40–8.

    Article  CAS  PubMed  Google Scholar 

  27. Kayaert P, Van den Mooter G. Is the amorphous fraction of a dried nanosuspension caused by milling or by drying? A case study with Naproxen and Cinnarizine. Eur J Pharm Biopharm. 2012;81:650–6.

    Article  CAS  PubMed  Google Scholar 

  28. Sovizi MR, Hajimirsadeghi SS, Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;168:1134–9.

    Article  CAS  PubMed  Google Scholar 

  29. Zuo BY, Sun YH, Li H, Liu XH, Zhai YL, Sun J, et al. Preparation and in vitro/in vivo evaluation of fenofibrate nanocrystals. Int J Pharm. 2013;455:267–75.

    Article  CAS  PubMed  Google Scholar 

  30. Eloy OJ, Marchetti MJ. Solid dispersions containing ursolic acid in Poloxamer 407 and PEG 6000: a comparative study of fusion and solvent methods. Powder Technol. 2014;253:98–106.

    Article  CAS  Google Scholar 

  31. Mirza S, Ki JHM, Miroshnyk I, Rantanen J, Christiansen L, Karfalainen M, et al. Understanding processing-induced phase transformations in erythromycin–PEG 6000 solid dispersions. J Pharm Sci. 2006;95:1723–32.

    Article  CAS  PubMed  Google Scholar 

  32. Janssens S, De Armas HN, Roberts CJ, Van Den Mooter G. Characterization of ternary solid dispersions of itraconazole, PEG 6000, and HPMC 2910 E5. J Pharm Sci. 2008;97:2110–20.

    Article  CAS  PubMed  Google Scholar 

  33. Yang H, Teng F, Wang PX, Tian B, Lin X, Hu X, et al. Investigation of a nanosuspension stabilized by Soluplus1 to improve bioavailability. Int J Pharm. 2014;477:88–95.

    Article  CAS  PubMed  Google Scholar 

  34. Cerdeira AM, Mazzotti M, Gander B. Formulation and drying of miconazole and itraconazole nanosuspensions. Int J Pharm. 2013;443:209–20.

    Article  CAS  PubMed  Google Scholar 

  35. Gao L, Liu G, Ma J, Wang X, Zhou L, Li X. Drug nanocrystals: in vivo performances. J Control Release. 2012;160:418–30.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This study received financial support from the Key Discipline Construction Projects of Higher School, Hebei Province Natural Science Foundation of China (no. H2014406036), Science and Technology Research Key Project of Higher School in Hebei Province (no. ZH2012050), and Science and Technology Research Youth Fund Project of Higher School in Hebei Province (no. QN2015127).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cui-zhe Liu or Qiang Fu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

ESM 1

(TIF 16942 kb)

High resolution image (GIF 207 kb)

ESM 2

(TIF 6334 kb)

High resolution image (GIF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Cz., Chang, Jh., Zhang, L. et al. Preparation and Evaluation of Diosgenin Nanocrystals to Improve Oral Bioavailability. AAPS PharmSciTech 18, 2067–2076 (2017). https://doi.org/10.1208/s12249-016-0684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0684-y

KEY WORDS

Navigation