Skip to main content
Log in

Powder Flow Testing: Judicious Choice of Test Methods

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Flow property of pharmaceutical powders can be assessed by various flow testers and test methods. In this study, eight commercially available lactose grades were sourced and tested for angles of repose, tapping studies, shear cell measurements, stirred powder rheometry, and avalanching powder measurements. The relationships between various flow parameters and particle size were analyzed. Deviations from the general trend could be attributed to either the insensitivity of the test or differences in particle shape. The basic flowability energy of the powder rheometer was unable to reconcile the effects of shape and particle size on powder flowability. Avalanche time of the revolving drum powder analyzer and angle of repose exhibited good correlation with each other (r = 0.92) but experienced poor resolution for samples of smaller particle sizes due to powder cohesiveness and the propensity for agglomerative flow. Flow test parameters could be categorized into three broad types, based on their relationship with particle size: (i) linear relationship, (ii) test parameter more sensitive to smaller sized particles, and (iii) test parameter more sensitive to larger sized particles. Choice of test parameters used to represent powder flow should be dependent on the sensitivity of the selected flow test methods to the sample types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Prescot J, Barnum R. On powder flowability. Pharm Technol. 2000;24:60–84.

    Google Scholar 

  2. Lindberg NO, Palsson M, Pihl AC, Freeman R, Freeman T, Zetzener H, et al. Flowability measurements of pharmaceutical powder mixtures with poor flow using five different techniques. Drug Dev Ind Pharm. 2004;30(7):785–91.

    Article  CAS  PubMed  Google Scholar 

  3. Fitzpatrick JJ, Barringer SA, Iqbal T. Flow property measurement of food powders and sensitivity of Jenike’s hopper design methodology to the measured values. J Food Eng. 2004;61(3):399–405.

    Article  Google Scholar 

  4. Sandler N, Wilson D. Prediction of granule packing and flow behavior based on particle size and shape analysis. J Pharm Sci. 2010;99(2):958–68.

    Article  CAS  PubMed  Google Scholar 

  5. Yu W, Muteki K, Zhang L, Kim G. Prediction of bulk powder flow performance using comprehensive particle size and particle shape distributions. J Pharm Sci. 2011;100(1):284–93.

    Article  CAS  PubMed  Google Scholar 

  6. Fu X, Huck D, Makein L, Armstrong B, Willen U, Freeman T. Effect of particle shape and size on flow properties of lactose powders. Particuology. 2012;10(2):203–8.

    Article  CAS  Google Scholar 

  7. Kurz HP, Münz G. The influence of particle size distribution on the flow properties of limestone powders. Powder Technol. 1975;11(1):37–40.

    Article  Google Scholar 

  8. Horio T, Yasuda M, Matsusaka S. Effect of particle shape on powder flowability of microcrystalline cellulose as determined using the vibration shear tube method. Int J Pharm. 2014;473(1–2):572–8.

    Article  CAS  PubMed  Google Scholar 

  9. Friedman SP, Robinson DA. Particle shape characterization using angle of repose measurements for predicting the effective permittivity and electrical conductivity of saturated granular media. Water Resour Res. 2002;38(11):18-1–18-11.

    Article  Google Scholar 

  10. Ferrari F, Cocconi D, Bettini R, Giordano F, Santi P, Tobyn M, et al. The surface roughness of lactose particles can be modulated by wet-smoothing using a high-shear mixer. AAPS PharmSciTech. 2004;5(4):69–74.

    Article  PubMed Central  Google Scholar 

  11. Pohlman NA, Severson BL, Ottino JM, Lueptow RM. Surface roughness effects in granular matter: influence on angle of repose and the absence of segregation. Phys Rev E. 2006;73(3):031304.

    Article  Google Scholar 

  12. Rios M. Developments in powder flow testing. Pharm Technol Eur. 2006;30(2):38–49.

    Google Scholar 

  13. Sandler N, Reiche K, Heinämäki J, Yliruusi J. Effect of moisture on powder flow properties of theophylline. Pharmaceutics. 2010;2(3):275–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stoklosa AM, Lipasek RA, Taylor LS, Mauer LJ. Effects of storage conditions, formulation, and particle size on moisture sorption and flowability of powders: a study of deliquescent ingredient blends. Food Res Int. 2012;49(2):783–91.

    Article  CAS  Google Scholar 

  15. Crouter A, Briens L. The effect of moisture on the flowability of pharmaceutical excipients. AAPS PharmSciTech. 2014;15(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  16. Jallo LJ, Dave RN. Explaining electrostatic charging and flow of surface-modified acetaminophen powders as a function of relative humidity through surface energetics. J Pharm Sci. 2015;104(7):2225–32.

    Article  CAS  PubMed  Google Scholar 

  17. Matsusaka S, Maruyama H, Matsuyama T, Ghadiri M. Triboelectric charging of powders: a review. Chem Eng Sci. 2010;65(22):5781–807.

    Article  CAS  Google Scholar 

  18. Dave RN, Wu C-Y, Chaudhuri B, Watano S. Magnetically mediated flow enhancement for controlled powder discharge of cohesive powders. Powder Technol. 2000;112(1–2):111–25.

    Article  CAS  Google Scholar 

  19. Ganesan V, Rosentrater KA, Muthukumarappan K. Flowability and handling characteristics of bulk solids and powders—a review with implications for DDGS. Biosyst Eng. 2008;101(4):425–35.

    Article  Google Scholar 

  20. Boonyai P, Bhandari B, Howes T. Stickiness measurement techniques for food powders: a review. Powder Technol. 2004;145(1):34–46.

    Article  CAS  Google Scholar 

  21. Brech M, Pearce D, Bagga P, Nijdam JJ. Improved lactose powder properties by in-situ coating with additives during spray drying. J Med Bioeng. 2013;2(3):207–13.

    CAS  Google Scholar 

  22. Visser J. An invited review, van der Waals and other cohesive forces affecting powder fluidization. Powder Technol. 1989;58(1):1–10.

    Article  CAS  Google Scholar 

  23. Castellanos A, Valverde JM, Pérez AT, Ramos A, Watson PK. Flow regimes in fine cohesive powders. Am Phys Soc. 1999;82:1156–9.

    CAS  Google Scholar 

  24. Bell TA. Industrial needs in solids flow for the 21st century. Powder Handling Process. 1999;11:9–12.

    Google Scholar 

  25. Nagel KM, Peck GE. Investigating the effects of excipients on the powder flow characteristics of theophylline anhydrous powder formulations. Drug Dev Ind Pharm. 2003;29(3):277–87.

    Article  CAS  PubMed  Google Scholar 

  26. Plinke MA, Leith D, Löffler RHF. Cohesion in granular materials. Bulk Solids Handling. 1994;14:101–6.

    Google Scholar 

  27. United States Pharmacopeia <1174 > Powder flow; USP 39/NF 34ed.; U.S. Pharmacopoeial Convention: Rockville, MD, 2016.

  28. Jenike AW. Gravity flow of bulk solids. Engineering Experiment Station: University of Utah; 1961.

  29. Shah RB, Tawakkul MA, Khan MA. Comparative evaluation of flow for pharmaceutical powders and granules. AAPS PharmSciTech. 2008;9(1):250–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saw HY, Davies CE, Paterson AHJ, Jones JR. Correlation between powder flow properties measured by shear testing and Hausner ratio. Procedia Eng. 2015;102:218–25.

    Article  CAS  Google Scholar 

  31. Haaker G. The influence of consolidation on shear test results. Powder Technol. 1987;51(3):231–6.

    Article  CAS  Google Scholar 

  32. Freeman R, Fu X. Characterisation of powder bulk, dynamic flow and shear properties in relation to die filling. Powder Metall. 2008;51(3):196–201.

    Article  CAS  Google Scholar 

  33. Leturia M, Benali M, Lagarde S, Ronga I, Saleh K. Characterization of flow properties of cohesive powders: a comparative study of traditional and new testing methods. Powder Technol. 2014;253:406–23.

    Article  CAS  Google Scholar 

  34. Blott SJ, Pye K. Particle shape: a review and new methods of characterization and classification. Sedimentology. 2008;55(1):31–63.

    Google Scholar 

  35. Bodhmage A. Correlation between physical properties and flowability: Indicators for fine powders. Canada University of Saskatchewan 2006.

  36. Emery E. Flow properties of selected pharmaceutical powders: University of Saskatchewan 2008.

  37. Podczeck F. A shape factor to assess the shape of particles using image analysis. Powder Technol. 1997;93(1):47–53.

    Article  CAS  Google Scholar 

  38. Carson JW, Wilms H. Development of an international standard for shear testing. Powder Technol. 2006;167(1):1–9.

    Article  CAS  Google Scholar 

  39. Shaffer K, Paterson AHJ, Davies CE, Hebbink G. Stokes shape factor for lactose crystals. Adv Powder Technol. 2011;22(4):454–7.

    Article  CAS  Google Scholar 

  40. Kleinhans MG, Markies H, de Vet SJ, in ‘t Veld AC, Postema FN. Static and dynamic angles of repose in loose granular materials under reduced gravity. J Geophys Res. 2011;116, E11004.

    Article  Google Scholar 

  41. Soh JL, Liew CV, Heng PW. New indices to characterize powder flow based on their avalanching behavior. Pharm Dev Technol. 2006;11(1):93–102.

    Article  CAS  PubMed  Google Scholar 

  42. Thakur SC, Ahmadian H, Sun J, Ooi JY. An experimental and numerical study of packing, compression, and caking behaviour of detergent powders. Particuology. 2014;12:2–12.

    Article  Google Scholar 

  43. Andrews G, Jones D, Hui Z, Diak OA, Walker G. Effects of grinding in pharmaceutical tablet production. In: Shayne CG, editor. Pharmaceutical manufacturing handbook: production and processes: Wiley; 2008.

  44. Freeman R. Measuring the flow properties of consolidated, conditioned and aerated powders—a comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 2007;174(1–2):25–33.

    Article  CAS  Google Scholar 

  45. Bharadwaj R, Ketterhagen WR, Hancock BC. Discrete element simulation study of a Freeman powder rheometer. Chem Eng Sci. 2010;65(21):5747–56.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial support from the GEA-NUS PPRL fund (N-148-000-008-001). Justin Tay is a research scholar at the National University of Singapore pursuing his higher degree.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Wan Sia Heng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tay, J.Y.S., Liew, C.V. & Heng, P.W.S. Powder Flow Testing: Judicious Choice of Test Methods. AAPS PharmSciTech 18, 1843–1854 (2017). https://doi.org/10.1208/s12249-016-0655-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0655-3

KEY WORDS

Navigation