Skip to main content
Log in

In Vitro Model Simulating Gastro-Intestinal Digestion in the Pediatric Population (Neonates and Young Infants)

  • Review Article
  • Theme: Pediatric Drug Development and Dosage Form Design
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The focus on drug delivery for the pediatric population has been steadily increasing in the last decades. In terms of developing in vitro models simulating characteristics of the targeted pediatric population, with the purpose of predicting drug product performance after oral administration, it is important to simulate the gastro-intestinal conditions and processes the drug will encounter upon oral administration. When a drug is administered in the fed state, which is commonly the case for neonates, as they are typically fed every 3 h, the digestion of the milk will affect the composition of the fluid available for drug dissolution/solubilization. Therefore, in order to predict the solubilized amount of drug available for absorption, an in vitro model simulating digestion in the gastro-intestinal tract should be utilized. In order to simulate the digestion process and the drug solubilization taking place in vivo, the following aspects should be considered; physiologically relevant media, media volume, use of physiological enzymes in proper amounts, as well as correct pH and addition of relevant co-factors, e.g., bile salts and co-enzymes. Furthermore, physiological transit times and appropriate mixing should be considered and mimicked as close as possible. This paper presents a literature review on physiological factors relevant for digestion and drug solubilization in neonates. Based on the available literature data, a novel in vitro digestion model simulating digestion and drug solubilization in the neonate and young infant pediatric population (2 months old and younger) was designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bar-Shalom D, Rose K. In: Bar-Shalom D, Rose K, editors. Pediatric Formulations. 1st ed. New York: Springer; 2014.

    Chapter  Google Scholar 

  2. Zisowsky J, Krause A, Dingemanse J. Drug Development for Pediatric Populations: Regulatory Aspects. Pharmaceuticals. 2010;2(4):364–88. doi:10.3390/pharmaceutics2040364.

    Article  Google Scholar 

  3. EC Regulation No 1901/2006 of the European Parliament and of the council of 12 December 2006 on medicinal products for paediatric use and amending Regulation (EEC) No 1768/92, directive 2001/20/EC, Directive 2001/83/EC and Regulation (EC) No 726/2004. Official Journal of the European Union, L378-1-L378/19. European Medicines Agency. 2006. http://ec.europa.eu/health/files/eudralex/vol-1/reg_2006_1901/reg_2006_1901_en.pdf

  4. European Medicines Agency. Paediatric Regulations. 2016. http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000068.jsp. Accessed 18 July 2016.

  5. European Medicines Agency. The European paediatric initiative: History of the Paediatric Regulation. Doc. Ref: EMEA/17967/04 Rev 1. 2007. http://www.ema.europa.eu/docs/en_GB/document_library/Other/2009/09/WC500003693.pdf

  6. U.S.Department of Health and Human Services Food and Drug Administration. Guidance for Industry. How to Comply with the Pediatric Research Equity Act. Draft guidance. 2005. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm079756.pdf

  7. U.S.Department of Health and Human Services Food and Drug Administration. General Clinical Pharmacology Considerations for Pediatric Studies for Drugs and Biological Products. Guidance for Industry. Draft guidance. 2014. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm425885.pdf

  8. U.S.Department of Health and Human Services Food and Drug Administration. Pediatric Product Development.2015. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/ucm049867.htm. Accessed 18 July 2016.

  9. The European Commision. Better Medicines for Children From Concept to Reality. Progress report on the paediatric regulation (EC) N°1901/2006. Com (2013) 443. 2013. http://ec.europa.eu/health/files/paediatrics/2013_com443/paediatric_report-com(2013)443_en.pdf

  10. U.S.Department of Health and Human Services Food and Drug Administration. Pediatric Study Plans: Content of and Process for Submitting Initial Pediatric Study Plans and Amended Initial Study Plans. Guidance for Industry. Draft Guidance. Draft guidance. March 2016 Revision 1. 2016. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm360507.pdf

  11. European Paediatric Formulation Initiative (EuPFI). Formulating better medicines. 2015. http://www.eupfi.org/

  12. Batchelor HK, Kendall R, Desset-Bretches S, Alex R, Ernest TB, on behalf of the European Paediatric Formulation Initiative (EUPFI). Application of in vitro biopharmaceutical methods in development of immediate release oral dosage forms intended for paediatric patients. EurJPharmBiopharm. 2013;85:833–42.

    CAS  Google Scholar 

  13. Batchelor HK, Fotaki N, Klein S. Paediatric oral biopharmaceutics: Key considerations and current challenges. Adv Drug Deliv Rev. 2014;73:102–26.

    Article  CAS  PubMed  Google Scholar 

  14. Kostewicz ES, Abrahamsson B, Brewster M, Brouwers J, Butler J, Carlert S, et al. In vitro models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57:342–66. doi:10.1016/j.ejps.2013.08.024.

    Article  CAS  PubMed  Google Scholar 

  15. Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman JB, Reppas C. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res. 2006;23(1):165–76. doi:10.1007/s11095-005-8476-1.

    Article  CAS  PubMed  Google Scholar 

  16. Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;15(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  17. Kataoka M, Masaoka Y, Yamazaki Y, Sakane T, Sezaki H, Yamashita S. In vitro system to evaluate oral absorption of poorly water-soluble drugs: simultaneous analysis on dissolution and permeation of drugs. Pharm Res. 2003;20(10):1674–80.

    Article  CAS  PubMed  Google Scholar 

  18. Frank KJ, Locher K, Zecevic DE, Fleth J, Wagner KG. In vivo predictive mini-scale dissolution for weak bases: Advantages of pH-shift in combination with an absorptive compartment. Eur J Pharm Sci. 2014;61:32–9. doi:10.1016/j.ejps.2013.12.015.

    Article  CAS  PubMed  Google Scholar 

  19. Kostewicz ES, Brauns U, Becker R, Dressman JB. Forecasting the oral absorption behavior of poorly soluble weak bases using solubility and dissolution studies in biorelevant media. Pharm Res. 2002;19(3):345–9.

    Article  CAS  PubMed  Google Scholar 

  20. Kaye JL. Review of paediatric gastrointestinal physiology data relevant to oral drug delivery. Int J Clin Pharm. 2011;33(1):20–4.

    Article  PubMed  Google Scholar 

  21. Mooij MG, de Koning BA, Huijsman ML, de Wildt SN. Ontogeny of oral drug absorption processes in children. Expert Opin Drug Metab Toxicol. 2012;8(10):1293–303. doi:10.1517/17425255.2012.698261.

    Article  CAS  PubMed  Google Scholar 

  22. Ashford M. Bioavailability - physiochemical and dosage form factors. In: Aulton M, Taylor K, editors. Aulton’s Pharmaceutics, The Design amd Manufacture of Medicines. 4th ed. Edinburgh: Elsevier Ltd; 2013. p. 314–33.

    Google Scholar 

  23. Mudie DM, Amidon GL, Amidon GE. Physiological parameters for oral delivery and in vitro testing. Mol Pharm. 2010;7(5):1388–405. doi:10.1021/mp100149j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Armand M, Hamosh M, Mehta NR, Angelus PA, Philpott JR, Henderson TR, et al. Effect of human milk or formula on gastric function and fat digestion in the premature infant. Pediatr Res. 1996;40(3):429–37. doi:10.1203/00006450-199609000-00011.

    Article  CAS  PubMed  Google Scholar 

  25. Mason S. Some aspects of gastric function in the newborn. Arch Dis Child. 1962;37:387–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fredrikzon B, Hernell O. Role of feeding on lipase activity in gastric contents. Acta Paediatr Scand. 1977;66(4):479–84.

    Article  CAS  PubMed  Google Scholar 

  27. Bode S, Dreyer M, Greisen G. Gastric emptying and small intestinal transit time in preterm infants: a scintigraphic method. J Pediatr Gastroenterol Nutr. 2004;39(4):378–82.

    Article  PubMed  Google Scholar 

  28. Ewer AK, Durbin GM, Morgan ME, Booth IW. Gastric emptying in preterm infants. Arch Dis Child Fetal Neonatal Ed. 1994;71(1):F24–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cavell B. Gastric emptying in infants fed human milk or infant formula. Acta Paediatr Scand. 1981;70(5):639–41.

    Article  CAS  PubMed  Google Scholar 

  30. Staelens S, Van Den Driessche M, Barclay D, Carrie-Faessler AL, Haschke F, Verbeke K, et al. Gastric emptying in healthy newborns fed an intact protein formula, a partially and an extensively hydrolysed formula. Clin Nutr. 2008;27(2):264–8. doi:10.1016/j.clnu.2007.12.009.

    Article  CAS  PubMed  Google Scholar 

  31. Omari TI, Davidson GP. Multipoint measurement of intragastric pH in healthy preterm infants. Arch Dis Child Fetal Neonatal Ed. 2003;88(6):F517–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Signer E. Gastric emptying in newborns and young infants. Measurement of the rate of emptying using indium-113m-microcolloid. Acta Paediatr sScand. 1975;64(3):525–30.

    Article  CAS  Google Scholar 

  33. Van Den Driessche M, Peeters K, Marien P, Ghoos Y, Devlieger H, Veereman-Wauters G. Gastric emptying in formula-fed and breast-fed infants measured with the 13C-octanoic acid breath test. J Pediatr Gastroenterol Nutr. 1999;29(1):46–51.

    Article  Google Scholar 

  34. Roman C, Carriere F, Villeneuve P, Pina M, Millet V, Simeoni U, et al. Quantitative and qualitative study of gastric lipolysis in premature infants: do MCT-enriched infant formulas improve fat digestion? Pediatr Res. 2007;61(1):83–8. doi:10.1203/01.pdr.0000250199.24107.fb.

    Article  PubMed  Google Scholar 

  35. Cavell B. Gastric emptying in preterm infants. Acta Paediatr Scand. 1979;68(5):725–30.

    Article  CAS  PubMed  Google Scholar 

  36. Billeaud C, Guillet J, Sandler B. Gastric emptying in infants with or without gastro-oesophageal reflux according to the type of milk. Eur J Clin Nutr. 1990;44(8):577–83.

    CAS  PubMed  Google Scholar 

  37. Cavell B. Reservoir and emptying function of the stomach of the premature infant. Acta Paediatr Scand Suppl. 1982;296:60–1.

    Article  CAS  PubMed  Google Scholar 

  38. Jarvenpaa AL, Rassin DK, Kuitunen P, Gaull GE, Raiha NC. Feeding the low-birth-weight infant. III. Diet influences bile acid metabolism. Pediatrics. 1983;72(5):677–83.

    CAS  PubMed  Google Scholar 

  39. Bourlieu C, Menard O, Bouzerzour K, Mandalari G, Macierzanka A, Mackie AR, et al. Specificity of infant digestive conditions: some clues for developing relevant in vitro models. Crit Rev Food Sci Nutr. 2014;54(11):1427–57. doi:10.1080/10408398.2011.640757.

    Article  PubMed  Google Scholar 

  40. Widstrom AM, Christensson K, Ransjo-Arvidson AB, Matthiesen AS, Winberg J, Uvnas-Moberg K. Gastric aspirates of newborn infants: pH, volume and levels of gastrin- and somatostatin-like immunoreactivity. Acta Paediatr Scand. 1988;77(4):502–8.

    Article  CAS  PubMed  Google Scholar 

  41. Smith LJ, Kaminsky S, D’Souza SW. Neonatal fat digestion and lingual lipase. Acta Paediatr Scand. 1986;75(6):913–8.

    Article  CAS  PubMed  Google Scholar 

  42. Cavell B. Postprandial gastric acid secretion in infants. Acta Paediatr Scand. 1983;72(6):857–60.

    Article  CAS  PubMed  Google Scholar 

  43. Litman RS, Wu CL, Quinlivan JK. Gastric volume and pH in infants fed clear liquids and breast milk prior to surgery. Anesth Analg. 1994;79(3):482–5.

    Article  CAS  PubMed  Google Scholar 

  44. Barbero GJ, Runge G, Fischer D, Crawford MN, Torres FE, Gyorgy P. Investigations on the bacterial flora, pH, and sugar content in the intestinal tract of infants. J Pediatr. 1952;40(2):152–63.

    Article  CAS  PubMed  Google Scholar 

  45. Fredrikzon B, Olivecrona T. Decrease of lipase and esterase activities in intestinal contents of newborn infants during test meals. Pediatr Res. 1978;12(5):631–4. doi:10.1203/00006450-197805000-00004.

    Article  CAS  PubMed  Google Scholar 

  46. Thomson J. The volume and acidity of the gastric contents in the unfed newborn infant. Arch Dis Child. 1951;26(130):558–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sondheimer JM, Clark DA, Gervaise EP. Continuous gastric pH measurement in young and older healthy preterm infants receiving formula and clear liquid feedings. J Pediatr Gastroenterol Nutr. 1985;4(3):352–5.

    Article  CAS  PubMed  Google Scholar 

  48. Siegel M, Lebenthal E, Topper W, Krantz B, Li PK. Gastric emptying in prematures of isocaloric feedings with differing osmolalities. Pediatr Res. 1982;16(2):141–7.

    Article  CAS  PubMed  Google Scholar 

  49. Ewer AK, Durbin GM, Morgan ME, Booth IW. Gastric emptying and gastro-oesophageal reflux in preterm infants. Arch Dis Child Fetal Neonatal Ed. 1996;75(2):F117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gargouri Y, Pieroni G, Riviere C, Sauniere JF, Lowe PA, Sarda L, et al. Kinetic assay of human gastric lipase on short- and long-chain triacylglycerol emulsions. Gastroenterology. 1986;91(4):919–25.

    Article  CAS  PubMed  Google Scholar 

  51. Fallingborg J, Christensen LA, Ingeman-Nielsen M, Jacobsen BA, Abildgaard K, Rasmussen HH, et al. Measurement of gastrointestinal pH and regional transit times in normal children. J Pediatr Gastroenterol Nutr. 1990;11(2):211–4.

    Article  CAS  PubMed  Google Scholar 

  52. Billeaud C, Senterre J, Rigo J. Osmolality of the gastric and duodenal contents in low birth weight infants fed human milk or various formulae. Acta Paediatr Scand. 1982;71(5):799–803.

    Article  CAS  PubMed  Google Scholar 

  53. Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–48. doi:10.1038/nrd2197.

    Article  CAS  PubMed  Google Scholar 

  54. Bakatselou V, Oppenheim RC, Dressman JB. Solubilization and wetting effects of bile salts on the dissolution of steroids. Pharm Res. 1991;8(12):1461–9.

    Article  CAS  PubMed  Google Scholar 

  55. Boehm G, Braun W, Moro G, Minoli I. Bile acid concentrations in serum and duodenal aspirates of healthy preterm infants: effects of gestational and postnatal age. Biol Neonate. 1997;71(4):207–14.

    Article  CAS  PubMed  Google Scholar 

  56. Watkins JB, Szczepanik P, Gould JB, Klein P, Lester R. Bile salt metabolism in the human premature infant. Preliminary observations of pool size and synthesis rate following prenatal administration of dexamethasone and phenobarbital. Gastroenterology. 1975;69(3):706–13.

    CAS  PubMed  Google Scholar 

  57. Encrantz JC, Sjovall J. On the bile acids in duodenal contents of infants and children. Bile acids and steroids 72. Clin Chim Acta. 1959;4:793–9.

    Article  CAS  PubMed  Google Scholar 

  58. Glasgow JF, Dinsmore H, Molla A, Macfarlane T. A comprehensive study of duodenal bile salts in newborn infants and their relationship to fat absorption. Ir J Med Sci. 1980;149(9):346–56.

    Article  CAS  PubMed  Google Scholar 

  59. Halpern Z, Vinograd Z, Laufer H, Gilat T, Moskowitz M, Bujanover Y. Characteristics of gallbladder bile of infants and children. J Pediatr Gastroenterol Nutr. 1996;23(2):147–50.

    Article  CAS  PubMed  Google Scholar 

  60. Challacombe DN, Edkins S, Brown GA. Duodenal bile acids in infancy. Arch Dis Child. 1975;50(11):837–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carey MC, Small DM, Bliss CM. Lipid digestion and absorption. Annu Rev Physiol. 1983;45:651–77. doi:10.1146/annurev.ph.45.030183.003251.

    Article  CAS  PubMed  Google Scholar 

  62. Patton JS, Carey MC. Watching fat digestion. Science. 1979;204(4389):145–8.

    Article  CAS  PubMed  Google Scholar 

  63. Hamosh M, Bitman J, Liao TH, Mehta NR, Buczek RJ, Wood DL, et al. Gastric lipolysis and fat absorption in preterm infants: effect of medium-chain triglyceride or long-chain triglyceride-containing formulas. Pediatrics. 1989;83(1):86–92.

    CAS  PubMed  Google Scholar 

  64. Bourlieu C, Menard O, De La Chevasnerie A, Sams L, Rousseau F, Madec MN, et al. The structure of infant formulas impacts their lipolysis, proteolysis and disintegration during in vitro gastric digestion. Food Chem. 2015;182:224–35.

    Article  CAS  PubMed  Google Scholar 

  65. Small DM. A classification of biologic lipids based upon their interaction in aqeous systems. J Am Oil Chem Soc. 1968;45(3):108–19.

    Article  CAS  PubMed  Google Scholar 

  66. Zangenberg NH, Mullertz A, Kristensen HG, Hovgaard L. A dynamic in vitro lipolysis model. II: Evaluation of the model. Eur. J Pharm Sci. 2001;14(3):237–44.

    CAS  Google Scholar 

  67. Larsen A, Holm R, Pedersen ML, Mullertz A. Lipid-based formulations for danazol containing a digestible surfactant, Labrafil M2125CS: in vivo bioavailability and dynamic in vitro lipolysis. Pharm Res. 2008;25(12):2769–77. doi:10.1007/s11095-008-9641-0.

    Article  CAS  PubMed  Google Scholar 

  68. Porter CJ, Kaukonen AM, Boyd BJ, Edwards GA, Charman WN. Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation. Pharm Res. 2004;21(8):1405–12.

    Article  CAS  PubMed  Google Scholar 

  69. Porter CJ, Kaukonen AM, Taillardat-Bertschinger A, Boyd BJ, O’Connor JM, Edwards GA, et al. Use of in vitro lipid digestion data to explain the in vivo performance of triglyceride-based oral lipid formulations of poorly water-soluble drugs: studies with halofantrine. J Pharm Sci. 2004;93(5):1110–21. doi:10.1002/jps.20039.

    Article  CAS  PubMed  Google Scholar 

  70. Williams HD, Sassene P, Kleberg K, Bakala-N’Goma JC, Calderone M, Jannin V, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 1: method parameterization and comparison of in vitro digestion profiles across a range of representative formulations. J Pharm Sci. 2012;101:3360–80. doi:10.1002/jps.23205.

    Article  CAS  PubMed  Google Scholar 

  71. Sassene PJ, Knopp MM, Hesselkilde JZ, Koradia V, Larsen A, Rades T, et al. Precipitation of a poorly soluble model drug during in vitro lipolysis: characterization and dissolution of the precipitate. J Pharm Sci. 2010;99(12):4982–91. doi:10.1002/jps.22226.

    Article  CAS  PubMed  Google Scholar 

  72. Mosgaard MD, Sassene P, Mu H, Rades T, Mullertz A. Development of a high-throughput in vitro intestinal lipolysis model for rapid screening of lipid-based drug delivery systems. Eur J Pharm Biopharm. 2015;94:493–500. doi:10.1016/j.ejpb.2015.06.028.

    Article  CAS  PubMed  Google Scholar 

  73. Sassene PJ, Mosgaard MD, Lobmann K, Mu H, Larsen FH, Rades T, et al. Elucidating the Molecular Interactions Occurring during Drug Precipitation of Weak Bases from Lipid-Based Formulations: A Case Study with Cinnarizine and a Long Chain Self-Nanoemulsifying Drug Delivery System. Mol Pharm. 2015;12(11):4067–76. doi:10.1021/acs.molpharmaceut.5b00498.

    Article  CAS  PubMed  Google Scholar 

  74. Thomas N, Holm R, Mullertz A, Rades T. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J Control Release. 2012;160(1):25–32. doi:10.1016/j.jconrel.2012.02.027.

    Article  CAS  PubMed  Google Scholar 

  75. Larsen AT, Sassene P, Mullertz A. In vitro lipolysis models as a tool for the characterization of oral lipid and surfactant based drug delivery systems. Int J Pharm. 2011;417(1-2):245–55. doi:10.1016/j.ijpharm.2011.03.002.

    Article  CAS  PubMed  Google Scholar 

  76. Zoppi G, Andreotti G, Pajno-Ferrara F, Njai DM, Gaburro D. Exocrine pancreas function in premature and full term neonates. Pediatr Res. 1972;6(12):880–6. doi:10.1203/00006450-197212000-00005.

    Article  CAS  PubMed  Google Scholar 

  77. Hamosh M, Scanlon JW, Ganot D, Likel M, Scanlon KB, Hamosh P. Fat digestion in the newborn. Characterization of lipase in gastric aspirates of premature and term infants. J Clin Invest. 1981;67(3):838–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. DiPalma J, Kirk CL, Hamosh M, Colon AR, Benjamin SB, Hamosh P. Lipase and pepsin activity in the gastric mucosa of infants, children, and adults. Gastroenterology. 1991;101(1):116–21.

    Article  CAS  PubMed  Google Scholar 

  79. Boehm G, Bierbach U, Senger H, Jakobsson I, Minoli I, Moro G, et al. Activities of lipase and trypsin in duodenal juice of infants small for gestational age. J Pediatr Gastroenterol Nutr. 1991;12(3):324–7.

    Article  CAS  PubMed  Google Scholar 

  80. Bernback S, Blackberg L, Hernell O. The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase. J Clin Invest. 1990;85(4):1221–6. doi:10.1172/JCI114556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bernback S, Blackberg L, Hernell O. Fatty acids generated by gastric lipase promote human milk triacylglycerol digestion by pancreatic colipase-dependent lipase. Biochim Biophys Acta. 1989;1001(3):286–93.

    Article  CAS  PubMed  Google Scholar 

  82. Johnson K, Ross L, Miller R, Xiao X, Lowe ME. Pancreatic lipase-related protein 2 digests fats in human milk and formula in concert with gastric lipase and carboxyl ester lipase. Pediatr Res. 2013;74(2):127–32. doi:10.1038/pr.2013.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Abrahamse E, Minekus M, van Aken GA, van de Heijning B, Knol J, Bartke N, et al. Development of the Digestive System-Experimental Challenges and Approaches of Infant Lipid Digestion. Food Dig. 2012;3(1-3):63–77. doi:10.1007/s13228-012-0025-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Blackberg L, Hernell O. The bile-salt-stimulated lipase in human milk. Purification and characterization. Eur J Biochem. 1981;116(2):221–5.

    Article  CAS  PubMed  Google Scholar 

  85. Moreau H, Laugier R, Gargouri Y, Ferrato F, Verger R. Human preduodenal lipase is entirely of gastric fundic origin. Gastroenterology. 1988;95(5):1221–6.

    Article  CAS  PubMed  Google Scholar 

  86. Rogalska E, Ransac S, Verger R. Stereoselectivity of lipases. II. Stereoselective hydrolysis of triglycerides by gastric and pancreatic lipases. J Biol Chem. 1990;265(33):20271–6.

    CAS  PubMed  Google Scholar 

  87. Jensen RG, DeJong FA, Clark RM, Palmgren LG, Liao TH, Hamosh M. Stereospecificity of premature human infant lingual lipase. Lipids. 1982;17(8):570–2.

    Article  CAS  PubMed  Google Scholar 

  88. Carriere F, Barrowman JA, Verger R, Laugier R. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology. 1993;105(3):876–88.

    Article  CAS  PubMed  Google Scholar 

  89. Sams L, Paume J, Giallo J, Carriere F. Relevant pH and lipase for in vitro models of gastric digestion. Food Funct. 2016;7(1):30–45. doi:10.1039/c5fo00930h.

    Article  CAS  PubMed  Google Scholar 

  90. Ville E, Carriere F, Renou C, Laugier R. Physiological study of pH stability and sensitivity to pepsin of human gastric lipase. Digestion. 2002;65(2):73–81.

    Article  CAS  PubMed  Google Scholar 

  91. Armand M, Borel P, Dubois C, Senft M, Peyrot J, Salducci J, et al. Characterization of emulsions and lipolysis of dietary lipids in the human stomach. Am J Physiol. 1994;266(3 Pt 1):G372–81.

    CAS  PubMed  Google Scholar 

  92. Armand M, Borel P, Pasquier B, Dubois C, Senft M, Andre M, et al. Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum. Am J Physiol. 1996;271(1 Pt 1):G172–83.

    CAS  PubMed  Google Scholar 

  93. Armand M, Pasquier B, Andre M, Borel P, Senft M, Peyrot J, et al. Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am J Clin Nutr. 1999;70(6):1096–106.

    CAS  PubMed  Google Scholar 

  94. Carriere F, Renou C, Lopez V, De CJ, Ferrato F, Lengsfeld H. de, C.A.; Laugier, R.; Verger, R. The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology. 2000;119(4):949–60.

    Article  CAS  PubMed  Google Scholar 

  95. Abrams CK, Hamosh M, Lee TC, Ansher AF, Collen MJ, Lewis JH, et al. Gastric lipase: localization in the human stomach. Gastroenterology. 1988;95(6):1460–4.

    Article  CAS  PubMed  Google Scholar 

  96. Pafumi Y, Lairon D, de la Porte PL, Juhel C, Storch J, Hamosh M, et al. Mechanisms of inhibition of triacylglycerol hydrolysis by human gastric lipase. J Biol Chem. 2002;277(31):28070–9. doi:10.1074/jbc.M202839200.

    Article  CAS  PubMed  Google Scholar 

  97. Gargouri Y, Pieroni G, Riviere C, Lowe PA, Sauniere JF, Sarda L, et al. Importance of human gastric lipase for intestinal lipolysis: an in vitro study. Biochim Biophys Acta. 1986;879(3):419–23.

    Article  CAS  PubMed  Google Scholar 

  98. Jensen RG, Clark RM, DeJong FA, Hamosh M, Liao TH, Mehta NR. The lipolytic triad: human lingual, breast milk, and pancreatic lipases: physiological implications of their characteristics in digestion of dietary fats. J Pediatr Gastroenterol Nutr. 1982;1(2):243–55.

    Article  CAS  PubMed  Google Scholar 

  99. Yang Y, Sanchez D, Figarella C, Lowe ME. Discoordinate expression of pancreatic lipase and two related proteins in the human fetal pancreas. Pediatr Res. 2000;47(2):184–8.

    Article  CAS  PubMed  Google Scholar 

  100. Lowe ME, Kaplan MH, Jackson-Grusby L, D’Agostino D, Grusby MJ. Decreased neonatal dietary fat absorption and T cell cytotoxicity in pancreatic lipase-related protein 2-deficient mice. J Biol Chem. 1998;273(47):31215–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Carriere F, Grandval P, Renou C, Palomba A, Prieri F, Giallo J, et al. Quantitative study of digestive enzyme secretion and gastrointestinal lipolysis in chronic pancreatitis. Clin Gastroenterol Hepatol. 2005;3(1):28–38.

    Article  CAS  PubMed  Google Scholar 

  102. Fernandez S, Jannin V, Rodier JD, Ritter N, Mahler B, Carriere F. Comparative study on digestive lipase activities on the self emulsifying excipient Labrasol, medium chain glycerides and PEG esters. Biochim Biophys Acta. 2007;1771(5):633–40. doi:10.1016/j.bbalip.2007.02.009.

    Article  CAS  PubMed  Google Scholar 

  103. Whitcomb DC, Lowe ME. Human pancreatic digestive enzymes. Dig Dis Sci. 2007;52(1):1–17. doi:10.1007/s10620-006-9589-z.

    Article  CAS  PubMed  Google Scholar 

  104. Gargouri Y, Moreau H, Verger R. Gastric lipases: biochemical and physiological studies. Biochim Biophys Acta. 1989;1006(3):255–71.

    Article  CAS  PubMed  Google Scholar 

  105. Armand M. Lipases and lipolysis in the human digestive tract: where do we stand? Curr Opin Clin Nutr Metab Care. 2007;10(2):156–64. doi:10.1097/MCO.0b013e3280177687.

    Article  CAS  PubMed  Google Scholar 

  106. Nilsson J, Blackberg L, Carlsson P, Enerback S, Hernell O, Bjursell G. cDNA cloning of human-milk bile-salt-stimulated lipase and evidence for its identity to pancreatic carboxylic ester hydrolase. Eur J Biochem. 1990;192(2):543–50.

    Article  CAS  PubMed  Google Scholar 

  107. Fredrikzon B, Hernell O, Blackberg L, Olivecrona T. Bile salt-stimulated lipase in human milk: evidence of activity in vivo and of a role in the digestion of milk retinol esters. Pediatr Res. 1978;12(11):1048–52. doi:10.1203/00006450-197811000-00004.

    Article  CAS  PubMed  Google Scholar 

  108. JH, Nejrup RG, Frøkjær H, Nilsson Å, Ohlsson L, Hellgren LI. Emulsifying triglycerides with dairy phospholipids instead of soy lecithin modulates gut lipase activity. Eur J Lipid Sci Technol. 2015;117:1522–39.

  109. Moreau H, Bernadac A, Gargouri Y, Benkouka F, Laugier R, Verger R. Immunocytolocalization of human gastric lipase in chief cells of the fundic mucosa. Histochemistry. 1989;91(5):419–23.

    Article  CAS  PubMed  Google Scholar 

  110. Capolino P, Guérin C, Paume J, Giallo J, Ballester JM, Cavalier JF, et al. In Vitro Gastrointestinal Lipolysis: Replacement of Human Digestive Lipases by a Combination of Rabbit Gastric and Porcine Pancreatic Extracts. Food Dig. 2011;2:43–51. doi:10.1007/s13228-011-0014-5.

    Article  CAS  Google Scholar 

  111. McClean P, Weaver LT. Ontogeny of human pancreatic exocrine function. Arch Dis Child. 1993;68:62–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Thomas N, Holm R, Rades T, Mullertz A. Characterising lipid lipolysis and its implication in lipid-based formulation development. AAPS J. 2012;14(4):860–71. doi:10.1208/s12248-012-9398-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xiao X, Ross LE, Sevilla WA, Wang Y, Lowe ME. Porcine pancreatic lipase related protein 2 has high triglyceride lipase activity in the absence of colipase. Biochim Biophys Acta. 2013;1831(9):1435–41. doi:10.1016/j.bbalip.2013.06.002.

Download references

Acknowledgments

This work is a research collaboration with the United States Food and Drug Administration, Center for Drug Evaluation and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anette Müllertz.

Ethics declarations

Disclaimer

The approaches and conclusions in this manuscript have not been formally disseminated by the United States Food and Drug Administration and should not be construed to represent any agency determination or policy.

Additional information

Guest Editors: Maren Preis and Jorg Breitkreutz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamstrup, D., Berthelsen, R., Sassene, P.J. et al. In Vitro Model Simulating Gastro-Intestinal Digestion in the Pediatric Population (Neonates and Young Infants). AAPS PharmSciTech 18, 317–329 (2017). https://doi.org/10.1208/s12249-016-0649-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0649-1

Key words

Navigation