Skip to main content
Log in

Quetiapine Nanoemulsion for Intranasal Drug Delivery: Evaluation of Brain-Targeting Efficiency

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

To evaluate the possibility of improved drug delivery of quetiapine fumarate (QTP), a nanoemulsion system was developed for intranasal delivery. Effects of different HLBs of Emalex LWIS 10, PEG 400 and Transcutol P, as co-surfactants, were studied on isotropic region of pseudoternary-phase diagrams of nanoemulsion system composed of capmul MCM (CPM) as oil phase, Tween 80 as surfactant and water. Phase behaviour, globule size, transmission electron microscope (TEM) photographs and brain-targeting efficiency of quetiapine nanoemulsion were investigated. In vitro dissolution study of optimised nanoemulsion formulation, with mean diameter 144 ± 0.5 nm, showed more than twofold increase in drug release as compared with pure drug. According to results of in vivo tissue distribution study in Wistar rats, intranasal administration of QTP-loaded nanoemulsion had shorter T max compared with that of intravenous administration. Higher drug transport efficiency (DTE%) and direct nose-to-brain drug transport (DTP%) was achieved by nanoemulsion. The nanoemulsion system may be a promising strategy for brain-targeted delivery of QTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Freedman R. Schizophrenia. New Engl J Med. 2003;349(18):1738–49.

    Article  CAS  PubMed  Google Scholar 

  2. Siegfried K, Johannes T, Angela H. Quetiapine: efficacy and tolerability in schizophrenia. Eur Neuropsychopharmacol. 2001;11(4):S405–13.

    Google Scholar 

  3. Estevez-Carrizo FE, Parrillo Ercoli MC, Estevez-Parrillo FT. single-dose relative bioavailability of a new quetiapine fumarate extended-release formulation: a postprandial, randomized, open-label, two-period crossover study in healthy uruguayan volunteers. Clin Ther. 2011;33(6):738–45.

    Article  CAS  PubMed  Google Scholar 

  4. Hsiao CC, Chen KP, Tsai CJ, Wang LJ, Chen CK, Lin SK. Rapid initiation of quetiapine well tolerated as compared with the conventional initiation regimen in patients with schizophrenia or schizoaffective disorders. Kaohsiung J Med Sci. 2011;27(11):508–13.

    Article  CAS  PubMed  Google Scholar 

  5. Sharma T. Quetiapine—efficacy in different domains. Eur Neuropsychopharmacol. 2001;11(4):S385–90.

    Article  CAS  PubMed  Google Scholar 

  6. Pae CU, Kim TS, Kim JJ, Lee SJ, Lee CU, Lee C, et al. Long-term treatment of adjunctive quetiapine for bipolar mania. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(5):763–6.

    Article  PubMed  Google Scholar 

  7. Wetzel H, Szegedi A, Hain C, Wiesner J. Seroquel (ICI 204 636), a putative atypical antipsychotic, in schizophrenia with positive symptomatology: results of an open clinical trial and changes of neuroendocrinological and EEG parameters. Psychopharmacology (Berl). 1995;119(2):231–8.

    Article  CAS  Google Scholar 

  8. Goren JL, Levin GM. Quetiapine, an atypical antipsychotic. Pharmacotherapy. 1998;18(6):1183–94.

    CAS  PubMed  Google Scholar 

  9. Green B. Focus on quetiapine. Curr Med Res Opin. 1999;15(3):145–51.

    Article  CAS  PubMed  Google Scholar 

  10. Thyrum PT, Wong YWJ, Yeh C. Single dose pharmacokinetics of quetiapine in subjects with renal or hepatic impairement. Prog Neuropsychopharmacol Biol Psychiatry. 2000;24(4):521–33.

    Article  CAS  PubMed  Google Scholar 

  11. Dhuria SV, Hanson LR, Frey W. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.

    Article  CAS  PubMed  Google Scholar 

  12. Wu H, Hu K, Jiang X. From nose to brain: understanding transport capacity and transport rate of drugs. Expert Opin Drug Deliv. 2008;5(10):1159–68.

    Article  CAS  PubMed  Google Scholar 

  13. Khan S, Patil K, Bobade N, Yeole P, Gaikwad R. Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J Drug Target. 2010;18(3):223–34.

    Article  CAS  PubMed  Google Scholar 

  14. Khan S, Patil K, Bobade N, Yeole P, Gaikwad R. Brain targeting studies on buspirone hydrochloride after intranasal administration of mucoadhesive formulation in rats. J Pharm Pharmacol. 2009;61(5):669–75.

    Article  CAS  PubMed  Google Scholar 

  15. Vyas TK, Babbar AK, Sharma RK, Singh S, Misra A. Intranasal mucoadhesive microemulsions of clonazepam: preliminary studies on brain targeting. J Pharm Sci. 2006;95(3):570–80.

    Article  CAS  PubMed  Google Scholar 

  16. Vyas TK, Babbar AK, Sharma RK, Misra A. Intranasal mucoadhesive microemulsions of zolmitriptan: preliminary studies on brain-targeting. J Drug Target. 2005;13(5):317–24.

    Article  CAS  PubMed  Google Scholar 

  17. Ugwoke MI, Verbeke N, Kinget R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J Pharm Pharmacol. 2001;53(1):3–21.

    Article  CAS  PubMed  Google Scholar 

  18. Devarajan V, Ravichandran V. Nanoemulsions: as modified drug delivery tool. Int J Comprehensive Pharm. 2011;2(4):1–6.

    Google Scholar 

  19. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45(1):89–121.

    Article  CAS  PubMed  Google Scholar 

  20. Kelmann RG, Kuminek G, Teixeira HF, Koester LS. Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. Int J Pharm. 2007;342(1-2):231–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kaltsa O, Michon C, Yanniotis S, Mandala I. Ultrasonic energy input influence on the production of sub-micron o/w emulsions containing whey protein and common stabilizers. Ultrason Sonochem. 2013;20:881–9.

    Article  CAS  PubMed  Google Scholar 

  22. Yuan Y, Yanxiang G, Jian Z, Like M. Characterization and stability evaluation of b-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res Int. 2008;41(1):61–8.

    Article  CAS  Google Scholar 

  23. Piaoa HM, Balakrishnana P, Choa HJ, Kimb H, Kimb YS, Chunga SJ, et al. Preparation and evaluation of fexofenadine microemulsions for intranasal Delivery. Int J Pharm. 2010;395(1–2):309–16.

    Article  Google Scholar 

  24. Mahajan HS, Mahajan MS, Nerkar PP, Agrawal A. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv. 2013; Early Online: 1–7.

  25. Zhao L, Wei Y, Huang Y, He B, Zhou Y, Fu J. Nanoemulsion improves the oral bioavailability of baicalin in rats: in vitro and in vivo evaluation. Int J Nanomedicine. 2013;8:3769–79.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gadiko C, Pamu P, Kilari EK. Effect of amiodarone on the pharmacodynamics of gliclazide in animal models. Int J Pharm Pharm Sci. 2013;5(4):290–3.

    CAS  Google Scholar 

  27. Patil-Gadhe A, Pokharkar V. Montelukast loaded nanostructured lipid carriers: part I oral bioavailability improvement. Eur J Pharm Biopharm. 2014;88(1):160–8.

    Article  CAS  PubMed  Google Scholar 

  28. Flieger J, Pizon M, Plech T, Luszczki JJ. Analysis of new potential anticonvulsant compounds in mice brain tissue by SPE/HPLC/DAD. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;909:26–33.

    Article  CAS  PubMed  Google Scholar 

  29. Xu S, Zheng S, Shen X, Yao Z, Pivnichny J, Tong X. Automated sample preparation and purification of homogenized brain tissues. J Pharm Biomed Anal. 2007;44(2):581–5.

    Article  CAS  PubMed  Google Scholar 

  30. Davis PC, Wong J, Gefvert O. Analysis and pharmacokinetics of quetiapine and two metabolites in human plasma using reversed-phase HPLC with ultraviolet and electrochemical detection. J Pharm Biomed Anal. 1999;20:271–82.

    Article  CAS  PubMed  Google Scholar 

  31. Qizhi Z, Xinguo J, Wenming J, Wei L, Lina S, Zhenqi S. Preparation of nimodipine-loaded microemulsion for intranasal delivery and evaluation on the targeting efficiency to the brain. Int J Pharm. 2004;275(1-2):85–96.

    Article  Google Scholar 

  32. Kumar M, Misra A, Mishra AK, Mishra P, Pathak K. Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting. J Drug Target. 2008;16(10):806–14.

    Article  CAS  PubMed  Google Scholar 

  33. Hyun JC, Wan SK, Ubonvan T, Insoo Y, Chung WC, Hyun TM, et al. Development of udenafil-loaded microemulsions for intranasal delivery: in-vitro and in-vivo evaluations. Int J Pharm. 2012;423(2):153–60.

    Article  Google Scholar 

  34. Kawakami K, Yoshikawa T, Moroto Y, Kanaoka E, Takahashi K, Nishihara Y, et al. Microemulsion formulation for enhanced absorption of poorly soluble drugs I. prescription design. J Contrl Release. 2002;81(1–2):65–74.

    Article  CAS  Google Scholar 

  35. Kawakami K, Yoshikawa T, Moroto Y, Kanaoka E, Takahashi K, Nishihara Y, et al. Microemulsion formulation for enhanced absorption of poorly soluble drugs II. In-vivo study. J Control Release. 2002;81(1–2):75–82.

    Article  CAS  PubMed  Google Scholar 

  36. Li L, Nandi I, Kim KH. Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam. Int J Pharm. 2002;237(1–2):77–85.

    Article  CAS  PubMed  Google Scholar 

  37. Sheikh S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 2007;66(2):227–43.

    Article  Google Scholar 

  38. Qian C, McClements DJ. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloid. 2011;25(5):1000–8.

    Article  CAS  Google Scholar 

  39. Wooster TJ, Golding M, Sanguansri P. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir. 2008;24(22):12758–65.

    Article  CAS  PubMed  Google Scholar 

  40. Varshosaz J, Eskandari S, Tabakhian M. Production and optimization of valproic acid nanostructured lipid carriers by the Taguchi design. Pharm Dev Technol. 2010;15(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  41. Kiruba F, Lalan M, Babbar AK, Kaul A, Mishra AK, Misra A. Intranasal Clobazam delivery in the treatment of status epilepticus. J Pharm Sci. 2010;100(2):692–703.

    Google Scholar 

  42. Kumar M, Misra A, Babbar AK, Mishra AK, Mishra P, Pathak K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm. 2008;358(1–2):285–91.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to AICTE for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha Pokharkar.

Ethics declarations

Declaration of Interest

The authors report no declarations of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boche, M., Pokharkar, V. Quetiapine Nanoemulsion for Intranasal Drug Delivery: Evaluation of Brain-Targeting Efficiency. AAPS PharmSciTech 18, 686–696 (2017). https://doi.org/10.1208/s12249-016-0552-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0552-9

KEY WORDS

Navigation