Skip to main content
Log in

Development of Acid-Resistant Alginate/Trimethyl Chitosan Nanoparticles Containing Cationic β-Cyclodextrin Polymers for Insulin Oral Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this study, the use of trimethylchitosan (TMC), by higher solubility in comparison with chitosan, in alginate/chitosan nanoparticles containing cationic β-cyclodextrin polymers (CPβCDs) has been studied, with the aim of increasing insulin uptake by nanoparticles. Firstly, TMCs were synthesized by iodomethane, and CPβCDs were synthesized within a one-step polycondensation reaction using choline chloride (CC) and epichlorohydrine (EP). Insulin–CβCDPs complex was prepared by mixing 1:1 portion of insulin and CPβCDs solutions. Then, nanoparticles prepared in a three-step procedure based on the iono-tropic pregelation method. Nanoparticles screened using experimental design and Placket Burman methodology to obtain minimum size and polydispercity index (pdI) and the highest entrapment efficiency (EE). CPβCDs and TMC solution concentration and pH and alginate and calcium chloride solution concentrations are found as the significant parameters on size, PdI, and EE. The nanoparticles with proper physicochemical properties were obtained; the size, PdI, and EE% of optimized nanoparticles were reported as 150.82 ± 21 nm, 0.362 ± 0.036, and 93.2% ± 4.1, respectively. The cumulative insulin release in intestinal condition achieved was 50.2% during 6 h. By SEM imaging, separate, spherical, and nonaggregated nanoparticles were found. In the cytotoxicity studies on Caco-2 cell culture, no significant cytotoxicity was observed in 5 h of incubation, but after 24 h of incubation, viability was decreased to 50% in 0.5 mμ of TMC concentration. Permeability studies across Caco-2 cells had been carried out, and permeability achieved in 240 min was 8.41 ± 0.39%, which shows noticeable increase in comparison with chitosan nanoparticles. Thus, according to the results, the optimized nanoparticles can be used as a new insulin oral delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Reis CP, Ribeiro AJ, Houng S, Veiga F, Neufeld RJ. Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity. Eur J Pharm Sci. 2007;30(5):392–7.

    Article  CAS  PubMed  Google Scholar 

  2. Sarmento B, Martins S, Ribeiro A, Veiga F, Neufeld R, Ferreira D. Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers. Int J Pept Protein Res. 2006;12(2):131–8.

    Article  CAS  Google Scholar 

  3. Ubaidulla U, Khar RK, Ahmed FJ, Panda AK. Development and in-vivo evaluation of insulin-loaded chitosan phthalate microspheres for oral delivery. J Pharm Pharmacol. 2007;59(10):1345–51.

    Article  CAS  PubMed  Google Scholar 

  4. Lin Y-H, Liang H-F, Chung C-K, Chen M-C, Sung H-W. Physically crosslinked alginate/N, O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials. 2005;26(14):2105–13.

    Article  CAS  PubMed  Google Scholar 

  5. Pillai O, Panchagnula R. Insulin therapies—past, present and future. Drug Discov Today. 2001;6(20):1056–61.

    Article  CAS  PubMed  Google Scholar 

  6. Elsayed A, Remawi MA, Qinna N, Farouk A, Badwan A. Formulation and characterization of an oily-based system for oral delivery of insulin. Eur J Pharm Biopharm. 2009;73(2):269–79.

    Article  CAS  PubMed  Google Scholar 

  7. Tiwari AK, Gajbhiye V, Sharma R, Jain NK. Carrier mediated protein and peptide stabilization. Drug Deliv. 2010;17(8):605–16.

    Article  CAS  PubMed  Google Scholar 

  8. Trapani A, Lopedota A, Franco M, Cioffi N, Ieva E, Garcia-Fuentes M, et al. A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides. Eur J Pharm Biopharm. 2010;75(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  9. Takeuchi H, Yamamoto H, Niwa T, Hino T, Kawashima Y. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm Res. 1996;13(6):896–901.

    Article  CAS  PubMed  Google Scholar 

  10. Radwan MA, Aboul-Enein HY. The effect of oral absorption enhancers on the in vivo performance of insulin-loaded poly(ethylcyanoacrylate) nanospheres in diabetic rats. J Microencapsul. 2002;19(2):225–35.

    Article  CAS  Google Scholar 

  11. Bayat A, Dorkoosh FA, Dehpour AR, Moezi L, Larijani B, Junginger HE, et al. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: ex vivo and in vivo studies. Int J Pharm. 2008;356(1–2):259–66.

    Article  CAS  PubMed  Google Scholar 

  12. Krauland AH, Alonso MJ. Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Int J Pharm. 2007;340(1–2):134–42.

    Article  CAS  PubMed  Google Scholar 

  13. Vila A, Sánchez A, Tobío M, Calvo P, Alonso MJ. Design of biodegradable particles for protein delivery. J Control Release. 2002;78(1–3):15–24.

    Article  CAS  PubMed  Google Scholar 

  14. Tiyaboonchai W, Woiszwillo J, Sims RC, Middaugh CR. Insulin containing polyethylenimine–dextran sulfate nanoparticles. Int J Pharm. 2003;255(1–2):139–51.

    Article  CAS  PubMed  Google Scholar 

  15. Fasano A. Innovative strategies for the oral delivery of drugs and peptides. Trends Biotechnol. 1998;16(4):152–7.

    Article  CAS  PubMed  Google Scholar 

  16. Kidron M, Bar-On H, Berry EM, Ziv E. The absorption of insulin from various regions of the rat intestine. Life Sci. 1982;31(25):2837–41.

    Article  CAS  PubMed  Google Scholar 

  17. Martin Werle HT, Bernkop-Schnurch A. Modified chitosans for oral drug delivery. J Pharm Sci. 2008;98(5):1643–56.

    Article  Google Scholar 

  18. Artursson P, Lindmark T, Davis S, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res. 1994;11(9):1358–61.

    Article  CAS  PubMed  Google Scholar 

  19. Van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci. 2001;14(3):201–7.

    Article  PubMed  Google Scholar 

  20. El-Sherbiny IM. Enhanced pH-responsive carrier system based on alginate and chemically modified carboxymethyl chitosan for oral delivery of protein drugs: preparation and in-vitro assessment. Carbohydr Polym. 2010;80(4):1125–36.

    Article  CAS  Google Scholar 

  21. Shilpa A, Agrawal S, Ray AR. Controlled delivery of drugs from alginate matrix. J Macromol Sci Pure Part C: Polym Rev. 2003;43(2):187–221.

    Article  Google Scholar 

  22. Chen Y, Siddalingappa B, Chan PHH, Benson HAE. Development of a chitosan-based nanoparticle formulation for delivery of a hydrophilic hexapeptide, dalargin. Pept Sci. 2008;90(5):663–70.

    Article  CAS  Google Scholar 

  23. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm. 2004;274(1–2):1–33.

    CAS  PubMed  Google Scholar 

  24. George M, Abraham TE. pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs. Int J Pharm. 2007;335(1–2):123–9.

    Article  CAS  PubMed  Google Scholar 

  25. Huang L, Xin J, Guo Y, Li J. A novel insulin oral delivery system assisted by cationic β-cyclodextrin polymers. J Appl Polym Sci. 2010;115(3):1371–9.

    Article  CAS  Google Scholar 

  26. Mahjub R, Dorkoosh F, Amini M, Khoshayand M, Rafiee-Tehrani M. Preparation, statistical optimization, and in vitro characterization of insulin nanoparticles composed of quaternized aromatic derivatives of chitosan. AAPS Pharm Sci Technol. 2011;12(4):1407–19.

    Article  CAS  Google Scholar 

  27. Zhang N, Li J, Jiang W, Ren C, Li J, Xin J, et al. Effective protection and controlled release of insulin by cationic β-cyclodextrin polymers from alginate/chitosan nanoparticles. Int J Pharm. 2010;393(1–2):213–9.

    Article  Google Scholar 

  28. Sieval AB, Thanou M, Kotzkb AF, Verhoefa JC, Brussee JC, Junginger HE. Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride. Carbohydr Polym. 1998;36:157–65.

    Article  CAS  Google Scholar 

  29. Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev. 2001;52(2):117–26.

    Article  CAS  PubMed  Google Scholar 

  30. Shao Z, Li Y, Chermak T, Mitra A. Cyclodextrins as mucosal absorption promoters of insulin. II. Effects of β-cyclodextrin derivatives on α-chymotryptic degradation and enteral absorption of insulin in rats. Pharm Res. 1994;11(8):1174–9.

    Article  CAS  PubMed  Google Scholar 

  31. Sajeesh S, Sharma CP. Cyclodextrin–insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm. 2006;325(1–2):147–54.

    Article  CAS  PubMed  Google Scholar 

  32. Irie T, Uekama K. Cyclodextrins in peptide and protein delivery. Adv Drug Deliv Rev. 1999;36(1):101–23.

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Xiao H, Li J, Zhong Y. Drug carrier systems based on water-soluble cationic β-cyclodextrin polymers. Int J Pharm. 2004;278(2):329–42.

    Article  CAS  PubMed  Google Scholar 

  34. Rowsen L, Moses KJD, Sharma CP. Beta cyclodextrin±insulin-encapsulated chitosan/alginate matrix: oral delivery system. J Appl Polym Sci. 1999;75:1089–96.

    Google Scholar 

  35. Li J, Guo Z, Xin J, Zhao G, Xiao H. 21-Arm star polymers with different cationic groups based on cyclodextrin core for DNA delivery. Carbohydr Polym. 2010;79(2):277–83.

    Article  CAS  Google Scholar 

  36. Li J, Loh XJ. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv Drug Deliv Rev. 2008;60(9):1000–17.

    Article  CAS  PubMed  Google Scholar 

  37. Xin J, Guo Z, Chen X, Jiang W, Li J, Li M. Study of branched cationic β-cyclodextrin polymer/indomethacin complex and its release profile from alginate hydrogel. Int J Pharm. 2010;386(1–2):221–8.

    Article  CAS  PubMed  Google Scholar 

  38. Kowapradit J, Apirakaramwong A, Ngawhirunpat T, Rojanarata T, Sajomsang W, Opanasopit P. Methylated N-(4-N, N-dimethylaminobenzyl) chitosan coated liposomes for oral protein drug delivery. Eur J Pharm Sci. 2012;47(2):359–66.

    Article  CAS  PubMed  Google Scholar 

  39. Jia Z, Shen D, Xu W. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr Res. 2001;333(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  40. Kotzé AF, Lueßen HL, de Leeuw BJ, de Boer BG, Coos Verhoef J, Junginger HE. Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J Control Release. 1998;51(1):35–46.

    Article  PubMed  Google Scholar 

  41. Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate. J Pharm Sci. 1993;82(9):912–7.

    Article  CAS  PubMed  Google Scholar 

  42. Helgason T, Awad T, Kristbergsson K, McClements DJ, Weiss J. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J Colloid Interface Sci. 2009;334(1):75–81.

    Article  CAS  PubMed  Google Scholar 

  43. Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm. 2008;68(3):513–25.

    CAS  PubMed  Google Scholar 

  44. Bunjes H. Characterization of solid lipid nano- and microparticles. Lipospheres in drug targets and delivery. New York: CRC Press; 2005. p. 41–66.

    Google Scholar 

  45. Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63(6):456–69.

    Article  CAS  PubMed  Google Scholar 

  46. Julienne MC, Alonso MJ, Gómez Amoza JL, Benoit JP. Preparation of poly(D, L-lactide/glycolide) nanoparticles of controlled particle size distribution: application of experimental designs. Drug Dev Ind Pharm. 1992;18(10):1063–77.

    Article  CAS  Google Scholar 

  47. Hu W, Enying L, Yao LG. Optimization of drawbead design in sheet metal forming based on intelligent sampling by using response surface methodology. J Mater Process Technol. 2008;206(1–3):45–55.

    Article  Google Scholar 

  48. Chen V, Ma Y. Nanoparticles—a review. Trop J Pharm Res. 2006;5(1):561–73.

    Google Scholar 

  49. Fresta M, Puglisi G, Giammona G, Cavallaro G, Micali N, Furneri PM. Pefloxacine mesilate‐ and ofloxacin‐loaded polyethylcyanoacrylate nanoparticles. Characterization of the colloidal drug carrier formulation. J Pharm Sci. 1995;84(7):895–902.

    Article  CAS  PubMed  Google Scholar 

  50. Mundargi RC, Babu VR, Ransawamy V, Patel P, Aminbhavi TM. Nano/ micro technologies for delivering maromolecular therapeutics using poly ( D, L-lactide-co-glycolide) and its derivatives. J Control Release. 2008;125:193–209.

    Article  CAS  PubMed  Google Scholar 

  51. Wada R, Hyon SH, Ikada Y. Lactic acid oligomer microspheres containing hydrophilic drugs. J Pharm Sci. 1990;79(10):919–24.

    Article  CAS  PubMed  Google Scholar 

  52. Uchida T, Yagi A, Oda Y, Nakada Y, Goto S. Instability of bovine insulin in poly (lactide-co-glycolide)(PLGA) microspheres. Chem Pharm Bull. 1996;44(1):235–6.

    Article  CAS  PubMed  Google Scholar 

  53. Ganguly K, Chaturvedi K, More UA, Nadagouda MN, Aminbhavi TM. Polysacharide-based micro/nano hydrogels for delivering macromolecular therapeutics. J Control Release. 2014;193:162–73.

    Article  CAS  PubMed  Google Scholar 

  54. Werle M, Takeuchi H, Bernkop-Schnürch A. Modified chitosans for oral drug delivery. J Pharm Sci. 2009;98(5):1643–56.

    Article  CAS  PubMed  Google Scholar 

  55. Di Colo G, Zambito Y, Zaino C. Polymeric enhancers of mucosal epithelia permeability: synthesis, transepithelial penetration‐enhancing properties, mechanism of action, safety issues. J Pharm Sci. 2008;97(5):1652–80.

    Article  PubMed  Google Scholar 

  56. Agnihotri SA, Nadagouda MN, Aminbhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100:5–28.

    Article  CAS  PubMed  Google Scholar 

  57. Reis CP, Veiga FJ, Ribeiro AJ, Neufeld RJ, Damgé C. Nanoparticulate biopolymers deliver insulin orally eliciting pharmacological response. J Pharm Sci. 2008;97(12):5290–305.

    Article  CAS  PubMed  Google Scholar 

  58. Sadeghi A, Dorkoosh F, Avadi M, Saadat P, Rafiee-Tehrani M, Junginger H. Preparation, characterization and antibacterial activities of chitosan N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods. Int J Pharm. 2008;355(1):299–306.

    Article  CAS  PubMed  Google Scholar 

  59. Chaturvedi K, Ganguly K, Kulkarni AR, Kulkarni VH, Nadaqouda MN, Rudzinski WE, et al. Cyclodextrin-based siRNA delivery nanocarriers: a state of the art review. Expert Opin Drug Deliv. 2011;8(11):1455–68.

    Article  CAS  PubMed  Google Scholar 

  60. Mundargi RC, Rangaswamy V, Aminabhavi TM. pH sensetive oral insulin delivery systems using Eudragit microspheres. Drug Dev Ind Pharm. 2011;37(8):977–85.

    Article  CAS  PubMed  Google Scholar 

  61. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007;24(12):2108–206.

    Article  Google Scholar 

  62. Sarmento B, Ferreira D, Veiga F, Ribeiro A. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr Polym. 2006;66(1):1–7.

    Article  CAS  Google Scholar 

  63. Mundargi RC, Rangaswamy V, Aminabhavi TM. Poly (N-vinylcaprolactam-co-methacrilic acid) hydrogel microparticles for oral insulin delivery. J Microencapsul. 2011;28(5):384–94.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was made possible by financial supports from Deputy of Research, Tehran University of Medical Sciences.

Conflict of Interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Abedin Dorkoosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansourpour, M., Mahjub, R., Amini, M. et al. Development of Acid-Resistant Alginate/Trimethyl Chitosan Nanoparticles Containing Cationic β-Cyclodextrin Polymers for Insulin Oral Delivery. AAPS PharmSciTech 16, 952–962 (2015). https://doi.org/10.1208/s12249-014-0282-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0282-9

KEY WORDS

Navigation