Skip to main content
Log in

Effect of Ascorbic Acid on the Degradation of Cyanocobalamin and Hydroxocobalamin in Aqueous Solution: A Kinetic Study

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The degradation kinetics of 5 × 10−5 M cyanocobalamin (B12) and hydroxocobalamin (B12b) in the presence of ascorbic acid (AH2) was studied in the pH range of 1.0–8.0. B12 is degraded to B12b which undergoes oxidation to corrin ring cleavage products. B12b alone is directly oxidized to the ring cleavage products. B12 and B12b in degraded solutions were simultaneously assayed by a two-component spectrometric method at 525 and 550 nm without interference from AH2. Both degrade by first-order kinetics and the values of the rate constants at pH 1.0–8.0 range from 0.08 to 1.05 × 10−5 s−1 and 0.22–7.62 × 10−5 s−1, respectively, in the presence of 0.25 × 10−3 M AH2. The t 1/2 values of B12 and B12b range from 13.7 to 137.5 h and 2.5–87.5 h, respectively. The second-order rate constants for the interaction of AH2 with B12 and B12b are 0.05–0.28 × 10−2 and 1.10–30.08 × 10−2 M−1 s−1, respectively, indicating a greater effect of AH2 on B12b compared to that of B12. The k obs–pH profiles for both B12 and B12b show the highest rates of degradation around pH 5. The degradation of B12 and B12b by AH2 is affected by the catalytic effect of phosphate ions on the oxidation of AH2 in the pH range 6.0–8.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smith EL. Purification of anti-pernicious anemia factors from liver. Nature. 1948;161:638.

    Article  PubMed  CAS  Google Scholar 

  2. Rickes EL, Brink NG, Koniuszy FR, Wood TR, Folkers K. Crystalline vitamin B12. Science. 1948;107:396–7.

    Article  PubMed  CAS  Google Scholar 

  3. Banerjee R, Ragsdale SW. The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu Rev Biochem. 2003;72:209–47.

    Article  PubMed  CAS  Google Scholar 

  4. Green R, Miller JW. Vitamin B12. In: Zempleni J, Rucker RB, McCormick DB, Suttie JW, editors. Handbook of vitamins. 4th ed. Boca Raton: CRC Press; 2007. p. 413–57.

    Google Scholar 

  5. British Pharmacopoeia, 2013. Monographs on cyanocobalamin and hydroxocobalamin. London, UK: Her Majesty’s Stationary Office, Electronic version; 2013.

  6. Baxter N, Horsford J, Wokes F, Norris FW, Fernandes SJG. Cyanocobalamin and hydroxocobalamin in vitamer B12 injections. J Pharm Pharmacol. 1953;5:723–36.

    Article  PubMed  CAS  Google Scholar 

  7. Hayward GC, Hill HAO, Pratt JM, Vanston NJ, Williams RJP. The chemistry of vitamin B12. Part IV. The thermodynamic trans-effect. J Chem Soc. 1965;6485–93.

  8. Vogler A, Hirschmann R, Otto H, Kunkely H. Photochemistry of biologically important transition metal complexes. I. Cyanocobalamin and related corrin complexes of rhodium(III). Ber Bunsenges Physik Chem. 1976;80:420–4.

    Article  CAS  Google Scholar 

  9. Connors KA, Amidon GL, Stella VJ. Chemical stability of pharmaceuticals a handbook for pharmacists. 2nd ed. New York: John Willey; 1986. p. 377–84.

    Google Scholar 

  10. Ahmad I, Hussain W, Fareedi AA. Photolysis of cyanocobalamin in aqueous solution. J Pharm Biomed Anal. 1992;10:9–15.

    Article  PubMed  CAS  Google Scholar 

  11. Ahmad I, Hussain W. Stability of cyanocobalamin solutions in sunlight and artificial light. Pak J Pharm Sci. 1993;6:23–8.

    PubMed  CAS  Google Scholar 

  12. Macek TJ. Stability problems with some vitamins in pharmaceuticals. Am J Pharm. 1960;132:433–55.

    PubMed  CAS  Google Scholar 

  13. Kirschbaum J. Cyanocobalamin. In: Florey K, editor. Analytical profiles of drug substances, vol. 10. New York: Academic; 1981. p. 183–288.

    Google Scholar 

  14. DeRitter E. Vitamins in pharmaceutical formulations. J Pharm Sci. 1982;71:1073–96.

    Article  PubMed  CAS  Google Scholar 

  15. Heathcote J, Wills BA. Hydrolytic destruction of thiamine, especially in the presence of cyanocobalamin. J Pharm Pharmacol. 1962;14:232–6.

    Article  PubMed  CAS  Google Scholar 

  16. Doerge RF, Ravin LJ, Caldwell HC. Effect of the thiazole moiety of thiamine hydrochloride and selected model compounds on cyanocobalamin stability. J Pharm Sci. 1965;54:1038–41.

    Article  PubMed  CAS  Google Scholar 

  17. Mukherjee SL, Sen SP. Stability of vitamin B12. Part II. Protection by an iron salt against destruction by aneurine and nicotinamide. J Pharm Pharmacol. 1959;11:26–31.

    Article  PubMed  CAS  Google Scholar 

  18. Ahmad I, Ansari IA, Ismail T. Effect of nicotinamide on the photolysis of cyanocobalamin in aqueous solution. J Pharm Biomed Anal. 2003;31:369–74.

    Article  PubMed  CAS  Google Scholar 

  19. Ahmad I, Hussain W. Multicomponent spectrophotometric assay of cyanocobalamin, hydroxocobalamin and riboflavin. Pak J Pharm Sci. 1992;5:121–7.

    PubMed  CAS  Google Scholar 

  20. Ahmad I, Hafeez A, Akhter N, Vaid FHM, Qadeer K. Effect of riboflavin on the photolysis of cyanocobalamin in aqueous solution. Open Anal Chem J. 2012;6:22–7.

    Article  CAS  Google Scholar 

  21. Juzeniene A, Nizauskaite Z. Photodegradation of cobalamins in aqueous solutions and in human blood. J Photochem Photobiol B Biol. 2013;122:7–14.

    Article  CAS  Google Scholar 

  22. Ansari A, Vaid FHM, Ahmad I. Spectral study of photolysis of aqueous cyanocobalamin solutions in presence of vitamins B and C. Pak J Pharm Sci. 2004;17:93–9.

    PubMed  CAS  Google Scholar 

  23. Ichikawa M, Ide N, Shiraishi S, Ono K. Effect of various halide salts on the incompatibility of cyanocobalamin and ascorbic acid in aqueous solution. Chem Pharm Bull. 2005;53:688–90.

    Article  PubMed  CAS  Google Scholar 

  24. Frost DV, Lapidus M, Plaut KA, Scherfling E, Fricke HH. Differential stability of various analogs of cobalamin to vitamin C. Science. 1952;116:119–21.

    Article  PubMed  CAS  Google Scholar 

  25. Marcus M, Prabhudesai M, Wassef S. Stability of vitamin B12 in the presence of ascorbic acid in food and serum: restoration by cyanide of apparent loss. Am J Clin Nutr. 1980;33:137–43.

    PubMed  CAS  Google Scholar 

  26. Newmark HL, Scheiner MS, Marcus M, Prabhudesai M. Stability of vitamin B12 in the presence of ascorbic acid. Am J Clin Nutr. 1976;29:645–9.

    PubMed  CAS  Google Scholar 

  27. Herbert V, Jacob E. Destruction of vitamin B by ascorbic acid. JAMA. 1974;230:241–2.

    Article  PubMed  CAS  Google Scholar 

  28. Trenner NR, Buhs RP, Bacher FA, Gakenheimer WC. A note concerning the incompatibility of vitamin B12 and ascorbic acid. J Am Pharm Assoc. 1950;39:361.

    Article  CAS  Google Scholar 

  29. Campbell JA, McLaughlan JM, Chapman DG. A method for the differentiation of hydroxocobalamin from cyanocobalamin employing the ascorbic acid reaction. J Am Pharm Assoc. 1952;41:479–81.

    Article  CAS  Google Scholar 

  30. Hutchins HH, Cravioto PJ, Macek TJ. A comparison of the stability of cyanocobalamin and its analogs in ascorbate solution. J Am Pharm Assoc. 1956;45:806–8.

    Article  CAS  Google Scholar 

  31. Ahmad I, Hussain W. Stability of cyanocobalamin in parenteral preparations. Pak J Pharm Sci. 1993;6:53–9.

    PubMed  CAS  Google Scholar 

  32. Hogenkamp HPC. The interaction between vitamin B12 and vitamin C. Am J Clin Nutr. 1980;33:1–3.

    PubMed  CAS  Google Scholar 

  33. Kuehl Jr FA, Shunk CH, Moore M, Folkers K. Vitamin B12. XXV. 3,3-Dimethyl-2,5-dioxopyrrolidine-4-propionamide: a new degradation product. J Am Chem Soc. 1955;77:4418–9.

    Article  CAS  Google Scholar 

  34. Marcus AD, Stanley JL. Stability of the cobalamin moiety in buffered aqueous solutions of hydroxocobalamin. J Pharm Sci. 1964;53:91–4.

    Article  PubMed  CAS  Google Scholar 

  35. Zuck DA, Conine JW. Stabilization of vitamin B12 I. Complex cyanides. J Pharm Sci. 1963;52:59–63.

    Article  PubMed  CAS  Google Scholar 

  36. Conine JW, Zuck DA. Stabilization of vitamin B12. II. Alpha-Hydroxynitriles. J Pharm Sci. 1963;52:63–6.

    Article  PubMed  CAS  Google Scholar 

  37. Pratt JM. The chemistry of vitamin B12. Part II. Photochemical reactions. J Chem Soc. 1964;5154–60.

  38. Sinko PJ. Martin’s physical pharmacy and pharmaceutical sciences. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 205–6. 416–25.

    Google Scholar 

  39. Cima L, Mantovan R. Cyanocobalamin and hydroxocobalamin separation by thin-layer chromatography. Farmaco Ed Prat. 1962;17:473–81.

    CAS  Google Scholar 

  40. Covello M, Schettino O. Determination by chromatospectrophotometry of hydroxo- and cyanocobalamin combined with other medicaments in various pharmaceutical forms. Farmaco Ed Prat. 1964;19:38–51.

    CAS  Google Scholar 

  41. Ganshirt H, Malzacher A. Separation of several vitamins of the B group and C by chromatography. Naturwiss. 1960;47:279–80.

    Article  CAS  Google Scholar 

  42. Bolliger HR, Konig A. Water-soluble vitamins. In: Stahl E, editor. Thin-layer chromatography. Berlin: Springer; 1969. p. 304–6.

    Google Scholar 

  43. Moffat C, Osselton MD, Widdop B. Clark’s analysis of drugs and poisons. 4th ed. London, UK: Pharmaceutical Press; 2011. p. 1173, 1500.

  44. O’Neil MJ. The merck index, 15th ed. Cambridge, UK: The Royal Society of Chemistry; 2013. Electronic version.

  45. Lexa D, Saveant JM, Zickler J. Electrochemistry of vitamin B12. 5. Cyanocobalamins. J Am Chem Soc. 1980;102:2654–63.

    Article  CAS  Google Scholar 

  46. Loy HW, Haggerty JF, Kline OL. Stability of vitamin B12 and B12b. J Assoc Offic Agr Chemists. 1952;35:169–74.

    CAS  Google Scholar 

  47. Carstensen JT. Kinetic pH profiles. In: Carstensen JT, Rhodes CT, editors. Drug stability principles and practices. 3rd ed. New York: Marcel Dekker; 2000. p. 57–111.

    Google Scholar 

  48. Hill HAO, Pratt JM, Williams RJP. The corphyrins. J Theor Biol. 1962;3:423–5.

    Article  CAS  Google Scholar 

  49. Allwood MC, Kearney MC. Compatibility and stability of additives in parenteral nutrition admixtures. Nutrition. 1998;14:697–706.

    Article  PubMed  CAS  Google Scholar 

  50. Linn Jr DE, Gould ES. Electron transfer. 92. Reductions of vitamin B12a (hydroxocobalamin) with formate and related formyl species. Inorg Chem. 1988;27:1625–8.

    Article  CAS  Google Scholar 

  51. Varia SA, Schuller S, Stella VJ. Phenytoin prodrugs IV: hydrolysis of various 3-(hydroxymethyl)phenytoin esters. J Pharm Sci. 1984;73:1074–80.

    Article  PubMed  CAS  Google Scholar 

  52. Powell MF. Enhanced stability of codeine sulfate: effect of pH, buffer, and temperature on the degradation of codeine in aqueous solution. J Pharm Sci. 1986;75:901–3.

    Article  PubMed  CAS  Google Scholar 

  53. Carney CF. Solution stability of ciclosidomine. J Pharm Sci. 1987;76:393–7.

    Article  PubMed  CAS  Google Scholar 

  54. Pramar Y, Gupta VD. Preformulation studies of spironolactone: effect of pH, two buffer species, ionic strength, and temperature on stability. J Pharm Sci. 1991;80:551–3.

    Article  PubMed  CAS  Google Scholar 

  55. Hoitink MA, Beijnen JH, Bult A, van der Houwen OAGJ, Nijholt J, Underberg WJM. Degradation kinetics of gonadorelin in aqueous solution. J Pharm Sci. 1996;85:1053–9.

    Article  PubMed  CAS  Google Scholar 

  56. Ahmad I, Fasihullah Q, Vaid FHM. A study of simultaneous photolysis and photoaddition reactions of riboflavin in aqueous solution. J Photochem Photobiol B Biol. 2004;75:13–20.

    Article  CAS  Google Scholar 

  57. Ahmad I, Fasihullah Q, Vaid FHM. Effect of phosphate buffer on photodegradation reactions of riboflavin in aqueous solution. J Photochem Photobiol B Biol. 2005;78:229–34.

    Article  CAS  Google Scholar 

  58. Ahmad I, Fasihullah Q, Vaid FHM. Effect of light intensity and wavelengths on photodegradation reactions of riboflavin in aqueous solution. J Photochem Photobiol B Biol. 2006;82:21–7.

    Article  CAS  Google Scholar 

  59. Ahmad I, Ahmed S, Sheraz MA, Vaid FHM, Ansari IA. Effect of divalent anions on photodegradation kinetics and pathways of riboflavin in aqueous solution. Int J Pharm. 2010;390:174–82.

    Article  PubMed  CAS  Google Scholar 

  60. Ahmad I, Mirza T, Iqbal K, Ahmed S, Sheraz MA, Vaid FHM. Effect of pH, buffer and viscosity on the photolysis of formylmethylflavin: a kinetic study. Aust J Chem. 2013;66:579–85.

    CAS  Google Scholar 

  61. Blaug SM, Hajratwala B. Kinetics of aerobic oxidation of ascorbic acid. J Pharm Sci. 1972;61:556–62.

    Article  PubMed  CAS  Google Scholar 

  62. Rogers AR, Yacomeni JA. The effect of pH on the aerobic degradation of ascorbic acid solutions. J Pharm Pharmcol. 1971;23:218S.

    Article  CAS  Google Scholar 

  63. Fasman GD. CRC handbook of biochemistry and molecular biology, vol. 1. 3rd ed. Boca Raton: CRC Press; 1976. p. 122.

    Google Scholar 

  64. Beiler JM, Moss JN, Martin GJ. Formation of a competitive antagonist of vitamin B12 by oxidation. Science. 1951;114:122–3.

    Article  PubMed  CAS  Google Scholar 

  65. Abu-Soud HM, Maitra D, Byun J, Souza CE, Banerjee J, Saed GM, et al. The reaction of HOCl and cyanocobalamin: corrin destruction and the liberation of cyanogen chloride. Free Radic Biol Med. 2012;52:616–25.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Lexa D, Saveant JM, Zickler J. Electrochemistry of vitamin B12. 2. Redox and acid-base equilibria in the B12a/B12r system. J Am Chem Soc. 1977;99:2786–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ali Sheraz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Qadeer, K., Zahid, S. et al. Effect of Ascorbic Acid on the Degradation of Cyanocobalamin and Hydroxocobalamin in Aqueous Solution: A Kinetic Study. AAPS PharmSciTech 15, 1324–1333 (2014). https://doi.org/10.1208/s12249-014-0160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0160-5

KEY WORDS

Navigation