Skip to main content

Advertisement

Log in

Preclinical Formulations: Insight, Strategies, and Practical Considerations

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

A lot of resources and efforts have been directed to synthesizing potentially useful new chemical entities (NCEs) by pharmaceutical scientists globally. Detailed physicochemical characterization of NCEs in an industrial setup begins almost simultaneously with preclinical testing. Most NCEs possess poor water solubility posing bioavailability issues during initial preclinical screening, sometimes resulting in dropping out of an NCE with promising therapeutic activity. Selection of right formulation approach for an NCE, based on its physicochemical properties, can aid in improving its solubility-related absorption and bioavailability issues. The review focuses on preclinical formulations stressing upon different preclinical formulation strategies and deciphers the understanding of formulation approaches that could be employed. It also provides detailed information related to a vast pool of excipients available today, which is of immense help in designing preclinical formulations. Few examples mentioned, throw light on key aspects of preclinical formulation development. The review will serve as an important guide for selecting the right strategy to improve bioavailability of NCEs for academic as well as industrial formulation scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NCE:

New chemical entity

FIH:

first in human

API:

active pharmaceutical ingredient

GLPs:

good laboratory practices

GIT:

gastrointestinal tract

SNEDDs:

self nano-emulsifying drug delivery systems

CTAB:

cetyl trimethyl ammonium bromide

CPC:

cetyl pyridinium chloride

LCTs:

long-chain triglycerides

MCTs:

medium-chain triglycerides

SCTs:

short-chain triglycerides

DMPK:

drug metabolism and pharmacokinetics

SOP:

standard operating procedure

DSC:

differential scanning calorimetry

TGA:

thermogravimetric analysis

References

  1. Boersen N, Lee T, Hui H-W, Faqi AS. Chapter 4 - development of preclinical formulations for toxicology studies. In: Faqi AS, editor. A comprehensive guide to toxicology in preclinical drug development. 1 ed. London: Academic Press. 2012. p. 69–86.

  2. Colerangle JB, Faqi AS. Preclinical development of non-oncogenic drugs (Small and Large Molecules). In: Faqi AS, editor. A comprehensive guide to toxicology in preclinical drug development. 1 ed. London: Academic Press; 2012. p. 517–42.

  3. Shah AK, Agnihotri SA. Recent advances and novel strategies in pre-clinical formulation development: an overview. J Control Release. 2011;156(3):281–96.

    Article  PubMed  CAS  Google Scholar 

  4. Gopinathan S, O'Neill E, Rodriguez LA, Champ R, Phillips M, Nouraldeen A, et al. In vivo toxicology of excipients commonly employed in drug discovery in rats. J Pharmacol Toxicol Methods. 2013;68(2):284–95.

    Article  PubMed  CAS  Google Scholar 

  5. Higgins J, Cartwright ME, Templeton AC. Progressing preclinical drug candidates: strategies on preclinical safety studies and the quest for adequate exposure. Drug Discov Today. 2012;17(15–16):828–36.

    Article  PubMed  CAS  Google Scholar 

  6. FDA. Drugs. FDA; 2010 [cited 2014 17/03/2014]; Available from: http://www.fda.gov/Drugs/DevelopmentApprovalProcess/SmallBusinessAssistance/ucm069962.htm.

  7. Dai W-G, Pollock-Dove C, Dong LC, Li S. Advanced screening assays to rapidly identify solubility-enhancing formulations: high-throughput, miniaturization and automation. Adv Drug Deliv Rev. 2008;60(6):657–72.

    Article  PubMed  CAS  Google Scholar 

  8. Kaushik R, Pisat N, Enose A, Nerurkar M. A 25 mg Approach for material characterization without automation. 2009 AAPS Annual Meeting and Exposition. National Biotechnology Conference, Washington Convention Center, Seattle: AAPS; 2009. p. M1206.

  9. FDA. The Biopharmaceutics Classification System (BCS) Guidance. FDA; 2009 [updated 2009; cited 2014 17/03/2014]; Available from: http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm128219.htm.

  10. Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29(3–4):278–87.

    Article  PubMed  CAS  Google Scholar 

  11. Alsenz J, Kansy M. High throughput solubility measurement in drug discovery and development. Adv Drug Deliv Rev. 2007;59(7):546–67.

    Article  PubMed  CAS  Google Scholar 

  12. Saal C, Petereit AC. Optimizing solubility: kinetic versus thermodynamic solubility temptations and risks. Eur J Pharm Sci. 2012;47(3):589–95.

    Article  PubMed  CAS  Google Scholar 

  13. Yee S. In vitro permeability across Caco-2 cells (Colonic) can predict in vivo (small intestinal) absorption in man–fact or myth. Pharm Res. 1997;14(6):763–6.

    Article  PubMed  CAS  Google Scholar 

  14. Mensch J, Melis A, Mackie C, Verreck G, Brewster ME, Augustijns P. Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability. Eur J Pharm Biopharm. 2010;74(3):495–502.

    Article  PubMed  CAS  Google Scholar 

  15. Barrett ER. Nanosuspensions for Parenteral Delivery. In: Deepak Thassu MD, and Yashwant Pathak, editor. Nanoparticulate Drug Delivery Systems2007. p. 33–50.

  16. Kulshreshtha AK, Singh ON, Wall GM, Garad S, Wang J, Joshi Y, et al. Preclinical Development for Suspensions. Pharmaceutical Suspensions. New York: Springer; 2010. p. 127–76.

    Book  Google Scholar 

  17. CDER. Guidance for Industry, Investigators, and Reviewers; Exploratory IND Studies; Pharmacology/Toxicology. U.S. Department of Health and Human Services Food and Drug Administration; 2006. Accessed 31 Mar 2013. Available from: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm078933.pdf.

  18. Niwa T, Hashimoto N. Novel technology to prepare oral formulations for preclinical safety studies. Int J Pharm. 2008;350(1–2):70–8.

    Article  PubMed  CAS  Google Scholar 

  19. Sherif IB, Miriam KF, Munir AH. Salt selection for pharmaceutical compounds. In: Adeyeye MC, Brittain HG, editors. Preformulation in solid dosage form development. 1st ed. New York: Informa Healthcare; 2008. p. 63–80.

  20. Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59(7):603–16.

    Article  PubMed  CAS  Google Scholar 

  21. Aungst BJ, Hussain MA. Sustained propranolol delivery and increased oral bioavailability in dogs given a propranolol Laurate salt. Pharm Res. 1992;9(11):1507–9.

    Article  PubMed  CAS  Google Scholar 

  22. Jones PH, Rowley E, Weiss AL, Bishop DL, Chun AH. Insoluble erythromycin salts. J Pharm Sci. 1969;58(3):337–9.

    Article  PubMed  CAS  Google Scholar 

  23. Guerrieri P, Taylor L. Role of salt and excipient properties on disproportionation in the solid-state. Pharm Res. 2009;26(8):2015–26.

    Article  PubMed  CAS  Google Scholar 

  24. Morissette SL, Almarsson O, Peterson ML, Remenar JF, Read MJ, Lemmo AV, et al. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev. 2004;56(3):275–300.

    Article  PubMed  CAS  Google Scholar 

  25. FDA. Guidance for Industry, Q1A(R2) Stability Testing of New Drug Substances and Products, Revision 2. 2003; Available from: http://www.fda.gov/downloads/regulatoryinformation/guidances/ucm128204.pdf.

  26. Huang L-F, Tong W-Q. Impact of solid state properties on developability assessment of drug candidates. Adv Drug Deliv Rev. 2004;56(3):321–34.

    Article  PubMed  CAS  Google Scholar 

  27. Jain P, Yalkowsky SH. Solubilization of poorly soluble compounds using 2-pyrrolidone. Int J Pharm. 2007;342(1–2):1–5.

    Article  PubMed  CAS  Google Scholar 

  28. Millard JW, Alvarez-Nunez FA, Yalkowsky SH. Solubilization by cosolvents: establishing useful constants for the log-linear model. Int J Pharm. 2002;245(1–2):153–66.

    Article  PubMed  CAS  Google Scholar 

  29. Miyako Y, Khalef N, Matsuzaki K, Pinal R. Solubility enhancement of hydrophobic compounds by cosolvents: role of solute hydrophobicity on the solubilization effect. Int J Pharm. 2010;393(1–2):48–54.

    Article  PubMed  CAS  Google Scholar 

  30. Joseph TR. Cosolvents and cosolvency. In: Swarbrick J, editor. Encyclopedia of pharmaceutical technology, Third Edition. New York: Informa Healthcare; 2006. p. 806–19.

    Google Scholar 

  31. Kawakami K, Oda N, Miyoshi K, Funaki T, Ida Y. Solubilization behavior of a poorly soluble drug under combined use of surfactants and cosolvents. Eur J Pharm Sci. 2006;28(1–2):7–14.

    Article  PubMed  CAS  Google Scholar 

  32. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59(7):645–66.

    Article  PubMed  CAS  Google Scholar 

  33. Jain AS, Date AA, Pissurlenkar RR, Coutinho EC, Nagarsenker MS. Sulfobutyl ether(7) beta-cyclodextrin (SBE(7) beta-CD) carbamazepine complex: preparation, characterization, molecular modeling, and evaluation of in vivo anti-epileptic activity. AAPS PharmSciTech. 2011;12(4):1163–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Loftsson T, Duchene D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329(1–2):1–11.

    Article  PubMed  CAS  Google Scholar 

  35. Nagarsenker MS, Joshi MS. Celecoxib-cyclodextrin systems: characterization and evaluation of in vitro and in vivo advantage. Drug Dev Ind Pharm. 2005;31(2):169–78.

    Article  PubMed  CAS  Google Scholar 

  36. Smith JS, Macrae RJ, Snowden MJ. Effect of SBE7-beta-cyclodextrin complexation on carbamazepine release from sustained release beads. Eur J Pharm Biopharm. 2005;60(1):73–80.

    Article  PubMed  CAS  Google Scholar 

  37. Crowley MM, Fredersdorf A, Schroeder B, Kucera S, Prodduturi S, Repka MA, et al. The influence of guaifenesin and ketoprofen on the properties of hot-melt extruded polyethylene oxide films. Eur J Pharm Sci. 2004;22(5):409–18.

    Article  PubMed  CAS  Google Scholar 

  38. Nagarsenker MS, Meshram RN, Ramprakash G. Solid dispersion of hydroxypropyl beta-cyclodextrin and ketorolac: enhancement of in-vitro dissolution rates, improvement in anti-inflammatory activity and reduction in ulcerogenicity in rats. J Pharm Pharmacol. 2000;52(8):949–56.

    Article  PubMed  CAS  Google Scholar 

  39. Naima Z, Siro T, Juan-Manuel GD, Chantal C, Rene C, Jerome D. Interactions between carbamazepine and polyethylene glycol (PEG) 6000: characterisations of the physical, solid dispersed and eutectic mixtures. Eur J Pharm Sci. 2001;12(4):395–404.

    Article  PubMed  CAS  Google Scholar 

  40. Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm. 2004;272(1–2):1–10.

    Article  PubMed  CAS  Google Scholar 

  41. Williams M, Tian Y, Jones DS, Andrews GP. Hot-melt extrusion technology: optimizing drug delivery. Eur Ind Pharm. 2010;7:7–10.

    Google Scholar 

  42. Zerrouk N, Chemtob C, Arnaud P, Toscani S, Dugue J. In vitro and in vivo evaluation of carbamazepine-PEG 6000 solid dispersions. Int J Pharm. 2001;225(1–2):49–62.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang X, Xia Q, Gu N. Preparation of all-trans retinoic acid nanosuspensions using a modified precipitation method. Drug Dev Ind Pharm. 2006;32(7):857–63.

    Article  PubMed  CAS  Google Scholar 

  44. Keck CM, Muller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62(1):3–16.

    Article  PubMed  CAS  Google Scholar 

  45. Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47(1):3–19.

    Article  PubMed  Google Scholar 

  46. Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol. 2004;56(7):827–40.

    Article  PubMed  CAS  Google Scholar 

  47. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang D, Tan T, Gao L, Zhao W, Wang P. Preparation of azithromycin nanosuspensions by high pressure homogenization and its physicochemical characteristics studies. Drug Dev Ind Pharm. 2007;33(5):569–75.

    Article  PubMed  CAS  Google Scholar 

  49. Yao L, Zhao X, Li Q, Zu Y, Fu Y, Zu B, et al. In vitro and in vivo evaluation of camptothecin nanosuspension: a novel formulation with high antitumor efficacy and low toxicity. Int J Pharm. 2012;423(2):586–8.

    Article  PubMed  CAS  Google Scholar 

  50. Date AA, Desai N, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine (London, UK). 2010;5(10):1595–616.

    Article  CAS  Google Scholar 

  51. Jain AS, Khachane PV, Shah SM, Nagarsenker MS. Nanoemulsions: a potential delivery system. Pharm Rev 2011:113–9.

  52. Date AA, Nagarsenker MS. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int J Pharm. 2007;329(1–2):166–72.

    Article  PubMed  CAS  Google Scholar 

  53. Shakeel F, Ramadan W, Gargum HM, Singh R. Preparation and in vivo evaluation of indomethacin loaded true nanoemulsions. Sci Pharm. 2009;78(1):47–56.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Singh KK, Vingkar SK. Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. Int J Pharm. 2008;347(1–2):136–43.

    Article  PubMed  CAS  Google Scholar 

  55. Vyas TK, Shahiwala A, Amiji MM. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm. 2008;347(1–2):93–101.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Sonneville-Aubrun O, Simonnet JT, L'Alloret F. Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interf Sci. 2004;108–109:145–9.

    Article  Google Scholar 

  57. Kelmann RG, Kuminek G, Teixeira HF, Koester LS. Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. Int J Pharm. 2007;342(1–2):231–9.

    Article  PubMed  CAS  Google Scholar 

  58. Kumar M, Misra A, Babbar AK, Mishra AK, Mishra P, Pathak K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm. 2008;358(1–2):285–91.

    Article  PubMed  CAS  Google Scholar 

  59. Ammar H, Salama H, Ghorab M, Mahmoud A. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech. 2009;10(3):808–19.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Dixit RP, Nagarsenker MS. Self-nanoemulsifying granules of ezetimibe: design, optimization and evaluation. Eur J Pharm Sci. 2008;35(3):183–92.

    Article  PubMed  CAS  Google Scholar 

  61. FDA. Guidance for Industry: Nonclinical Studies for the Safety Evaluation of Pharmaceutical Excipients May 2005; Available from: http://www.fda.gov/ohrms/dockets/98fr/2002d-0389-gdl0002.pdf.

  62. Kesisoglou F, Panmai S, Wu Y. Nanosizing–oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59(7):631–44.

    Article  PubMed  CAS  Google Scholar 

  63. Gattefossé. Capryol™ 90, Propylene glycol monocaprylate (type II) NF. Gattefossé; 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/node.php?articleid=162.

  64. Gattefossé. Capryol™ PGMC, Propylene glycol monocaprylate (type I) NF. Gattefossé; 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/node.php?articleid=163.

  65. Gattefossé. Lauroglycol™ 90, Propylene glycol monolaurate (type II) EP/NF. Gattefossé; 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/node.php?articleid=164.

  66. Gattefossé. Lauroglycol™ FCC, Propylene glycol monolaurate (type I) EP/NF. Gattefossé; 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/node.php?articleid=165.

  67. Gattefossé. Labrafac™ PG, Propylene glycol dicaprylocaprate EP, Propylene glycol dicaprylate/dicaprate NF. Gattefossé; 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/node.php?articleid=168.

  68. Gattefossé. Labrafil® M1944CS, Oleoyl macrogol-6 glycerides EP, Oleoyl polyoxyl-6 glycerides NF. Gattefossé; 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/node.php?articleid=10.

  69. Gattefossé. Labrafil® M2125CS, Linoleoyl macrogol-6 glycerides EP, Linoleoyl polyoxyl-6 glycerides NF. Gattefossé; 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/node.php?articleid=14.

  70. Gattefossé. Labrafil® M2130CS, Lauroyl macrogol-6 glycerides EP, Lauroyl polyoxyl-6 glycerides NF. Gattefossé 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/node.php?articleid=9.

  71. ABITEC. Capmul MCM. ABITEC; 2012. Accessed 31 Mar 2013. Available from: http://www.abiteccorp.com/wp-content/files_mf/1309450224CapmulMCMTDSI14.pdf.

  72. SASOL. Product Information, MIGLYOL® 810, 812, 818, 829, 840 Neutral Oils For Pharmaceuticals and Cosmetics. SASOL. Accessed 22 June 2012. Available from: http://abstracts.aapspharmaceutica.com/expoaaps07/Data/EC/Event/Exhibitors/263/cb63fb76-28f4-4948-a6d0-ae249dae9c30.pdf.

  73. Rowe RC, Sheskey PJ, Quinn ME. Handbook of Pharmaceutical Excipients. 6 ed. London: Pharmaceutical Press and American Pharmacists Association; 2009.

    Google Scholar 

  74. Services BS-CCD-PI. Lutrol® L and Lutrol F Grades, Ph. Eur: Poloxamers, USP/NF: Poloxamers. BASF; April 2010. Accessed 31 Mar 2013. Available from: http://www.pharma-ingredients.basf.com/Statements/Technical%20Informations/EN/Pharma%20Solutions/03_100102e_Lutrol%20L%20and%20Lutrol%20F-Grades.pdf.

  75. BASF. Safety Data Sheet, Lutrol® F 68 Poloxamer 188. BASF; 2010. Accessed 31 Mar 2013. Available from: http://worldaccount.basf.com/wa/NAFTA~en_US/Catalog/Pharma/doc4/BASF/PRD/30035118/Material%20Safety%20Data%20Sheet-CA-EN.pdf?title=&asset_type=msds/pdf&language=EN&validArea=CA&urn=urn:documentum:ProductBase_EU:09007af880232bf7.pdf.

  76. BASF. Safety Data Sheet, Lutrol® F 127. BASF; 2010. Accessed 31 Mar 2013. Available from: http://worldaccount.basf.com/wa/NAFTA~en_US/Catalog/Pharma/doc4/BASF/PRD/30035120/Material%20Safety%20Data%20Sheet-CA-EN.pdf?title=&asset_type=msds/pdf&language=EN&validArea=CA&urn=urn:documentum:ProductBase_EU:09007af8800dbb07.pdf.

  77. Gattefossé. Labrasol®, Caprylocaproyl macrogol-8 glycerides EP, Caprylocaproyl polyoxyl-8 glycerides NF. Gattefossé; 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/node.php?articleid=296.

  78. Gattefossé. MSDS Labrasol. Gattefossé; 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/media/document/msds_labrasol.pdf.

  79. Gattefossé. Gelucire® 44/14, Lauroyl macrogol-32 glycerides EP, Lauroyl polyoxyl-32 glycerides NF. Gattefossé; 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/node.php?articleid=8.

  80. Gattefossé. MSDS Gelucire 44/14. Gattefossé; 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/media/document/msds_gelucire_44_14.pdf.

  81. Gattefossé. Gelucire® 50/13, Stearoyl macrogol-32 glycerides EP, Stearoyl polyoxyl-32 glycerides NF. Gattefossé; 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/node.php?articleid=7.

  82. Gattefossé. MSDS Gelucire 50/13. Gattefossé; 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/media/document/msds_gelucire_50_13.pdf.

  83. ISOCHEM. Vitamin E TPGS NF Grade. ISOCHEM; 2011. Accessed 31 Mar 2013. Available from: http://www.isochem.eu/sites/default/files/pages/Vitamin%20E%20TPGS.pdf.

  84. Services BS-NaH-PI. Solutol® HS 15, Kolliphor HS 15, Ph. Eur: Macrogol 15 Hydroxystearate, USP/NF: Polyoxyl 15 Hydroxystearate. BASF; August 2010. Accessed 31 Mar 2013. Available from: http://www.pharma-ingredients.basf.com/Statements/Technical%20Informations/EN/Pharma%20Solutions/03_030748e_Solutol%20HS%2015.pdf.

  85. BASF. Safety Data Sheet, Solutol® HS 15. BASF; 2012. Accessed 31 Mar 2013. Available from: http://worldaccount.basf.com/wa/NAFTA~en_US/Catalog/Pharma/doc4/BASF/PRD/30035149/Material%20Safety%20Data%20Sheet-US-EN.pdf?title=&asset_type=msds/pdf&language=EN&validArea=US&urn=urn:documentum:ProductBase_EU:09007af8800a37ed.pdf.

  86. Services BS-NaH-PI. Cremophor® ELP, Kolliphor ELP, Ph. Eur: Macrogolglycerol Ricinoleate 35, USP/NF: Polyoxyl 35 Castor Oil. BASF; July 2008. Accessed 31 Mar 2013. Available from: http://www.pharma-ingredients.basf.com/Statements/Technical%20Informations/EN/Pharma%20Solutions/EMP%20030712e_Crempophor%20ELP.pdf.

  87. BASF. Safety Data Sheet, Cremophor® EL Castor Oil. BASF; 2010. Accessed 31 Mar 2013. Available from: http://worldaccount.basf.com/wa/NAFTA~en_US/Catalog/Pharma/doc4/BASF/PRD/30035152/Material%20Safety%20Data%20Sheet-US-EN.pdf?title=&asset_type=msds/pdf&language=EN&validArea=US&urn=urn:documentum:ProductBase_EU:09007af8800bc452.pdf.

  88. Services BS-NaH-PI. Cremophor® RH 40, Kolliphor RH 40, Ph. Eur: Macrogolglycerolhydroxystearate 40, USP/NF: Polyoxyl 40 Hydrogenerated Castor Oil. BASF; October 2010. Accessed 31 Mar 2013. Available from: http://www.pharma-ingredients.basf.com/Statements/Technical%20Informations/EN/Pharma%20Solutions/03_030713e_Cremophor%20RH%2040.pdf.

  89. BASF. Safety Data Sheet, Cremophor® RH 40 Surfactant. BASF; 2012. Accessed 22 June 2012. Available from: http://worldaccount.basf.com/wa/NAFTA~en_US/Catalog/Cosmetics/doc4/BASF/PRD/30035134/.pdf?title=&asset_type=msds/pdf&language=EN&validArea=CA&urn=urn:documentum:ProductBase_EU:09007af88014cb01.pdf.

  90. Gattefossé. Transcutol® HP, Highly purified diethylene glycol monoethyl ether EP/NF. Gattefossé; 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/node.php?articleid=171.

  91. Gattefossé. MSDS Transcutol HP. Gattefossé; 2010. Accessed 31 Mar 2013. Available from: http://www.gattefosse.com/media/document/msds_transcutol_hp.pdf.

  92. Services BS-NaH-PI. Soluphor® P, Kollisolv PYR, Ph. Eur: Pyrrolidone. BASF; July 2008. Accessed 31 Mar 2013. Available from: http://www.pharma-ingredients.basf.com/Statements/Technical%20Informations/EN/Pharma%20Solutions/EMP%20030747e_Soluphor%20P.pdf.

  93. BASF. Safety Data Sheet, Soluphor® P. BASF; 2012. Accessed 31 Mar 2013. Available from: http://worldaccount.basf.com/wa/NAFTA~en_US/Catalog/Pharma/doc4/BASF/PRD/30035117/Material%20Safety%20Data%20Sheet-CA-EN.pdf?title=&asset_type=msds/pdf&language=EN&validArea=CA&urn=urn:documentum:ProductBase_EU:09007af8802cfe13.pdf.

  94. Services BS-NaH-PI. Soluplus®. BASF; July 2010. Accessed 31 Mar 2013. Available from: http://www.pharma-ingredients.basf.com/Statements/Technical%20Informations/EN/Pharma%20Solutions/03_090801e_Soluplus.pdf.

  95. BASF. Safety Data Sheet, Soluplus®. BASF; 2010. Accessed 22 June 2012. Available from: http://worldaccount.basf.com/wa/NAFTA~en_US/Catalog/Pharma/doc4/BASF/PRD/30446233/Material%20Safety%20Data%20Sheet-CA-EN.pdf?title=&asset_type=msds/pdf&language=EN&validArea=CA&urn=urn:documentum:ProductBase_EU:09007af8801db1d2.pdf.

  96. Wang J, Maitani Y, Takayama K. Antitumor effects and pharmacokinetics of aclacinomycin A carried by injectable emulsions composed of vitamin E, cholesterol, and PEG-lipid. J Pharm Sci. 2002;91(4):1128–34.

    Article  PubMed  CAS  Google Scholar 

  97. Itoh K, Matsui S, Tozuka Y, Oguchi T, Yamamoto K. Improvement of physicochemical properties of N-4472. Part II: characterization of N-4472 microemulsion and the enhanced oral absorption. Int J Pharm. 2002;246(1–2):75–83.

    Article  PubMed  CAS  Google Scholar 

  98. Kan P, Chen ZB, Lee CJ, Chu IM. Development of nonionic surfactant/phospholipid o/w emulsion as a paclitaxel delivery system. J Control Release. 1999;58(3):271–8.

    Article  PubMed  CAS  Google Scholar 

  99. Khoo S-M, Humberstone AJ, Porter CJH, Edwards GA, Charman WN. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. Int J Pharm. 1998;167(1–2):155–64.

    Article  CAS  Google Scholar 

  100. Lee M-J, Lee M-H, Shim C-K. Inverse targeting of drugs to reticuloendothelial system-rich organs by lipid microemulsion emulsified with poloxamer 338. Int J Pharm. 1995;113(2):175–87.

    Article  CAS  Google Scholar 

  101. Kim SJ, Choi HK, Lee YB. Pharmacokinetic and pharmacodynamic evaluation of cyclosporin A O/W-emulsion in rats. Int J Pharm. 2002;249(1–2):149–56.

    Article  PubMed  CAS  Google Scholar 

  102. Li L, Nandi I, Kim KH. Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam. Int J Pharm. 2002;237(1–2):77–85.

    Article  PubMed  CAS  Google Scholar 

  103. Yi T, Wan J, Xu H, Yang X. A new solid self-microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs. Eur J Pharm Biopharm. 2008;70(2):439–44.

    Article  PubMed  CAS  Google Scholar 

  104. Kang BK, Lee JS, Chon SK, Jeong SY, Yuk SH, Khang G, et al. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int J Pharm. 2004;274(1–2):65–73.

    Article  PubMed  CAS  Google Scholar 

  105. Delongeas JL, de Conchard GV, Beamonte A, Bertheux H, Spire C, Maisonneuve C, et al. Assessment of Labrasol/Labrafil/Transcutol (4/4/2, v/v/v) as a non-clinical vehicle for poorly water-soluble compounds after 4-week oral toxicity study in Wistar rats. Regul Toxicol Pharmacol. 2010;57(2–3):284–90.

    Article  PubMed  CAS  Google Scholar 

  106. Cornaire G, Woodley J, Hermann P, Cloarec A, Arellano C, Houin G. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int J Pharm. 2004;278(1):119–31.

    Article  PubMed  CAS  Google Scholar 

  107. Jain AS, Date AA, Nagarsenker MS. Design, characterization and evaluation of anti-epileptic activity of nanoprecipitating preconcentrate of Carbamazepine. Drug Deliv Lett. 2013;3(1):61–9.

    Article  CAS  Google Scholar 

  108. Khachane P, Date AA, Nagarsenker MS. Eudragit EPO nanoparticles: application in improving therapeutic efficacy and reducing ulcerogenicity of meloxicam on oral administration. J Biomed Nanotechnol. 2011;7(4):590–7.

    Article  PubMed  CAS  Google Scholar 

  109. Khachane P, Date AA, Nagarsenker MS. Positively charged polymeric nanoparticles: application in improving therapeutic efficacy of meloxicam after oral administration. Pharmazie. 2011;66(5):334–8.

    PubMed  CAS  Google Scholar 

  110. Date AA, Nagarsenker MS, Patere S, Dhawan V, Gude RP, Hassan PA, et al. Lecithin-based novel cationic nanocarriers (Leciplex) II: improving therapeutic efficacy of quercetin on oral administration. Mol Pharm. 2011;8(3):716–26.

    Article  PubMed  CAS  Google Scholar 

  111. Jain AS, Shah SM, Nagarsenker MS, Nikam Y, Gude RP, Steiniger F, et al. Lipid colloidal carriers for improvement of anticancer activity of orally delivered quercetin: formulation, characterization and establishing in vitro–in vivo advantage. J Biomed Nanotechnol. 2013;9(7):1230–40.

    Article  PubMed  CAS  Google Scholar 

  112. Gelderblom H, Verweij J, van Zomeren DM, Buijs D, Ouwens L, Nooter K, et al. Influence of Cremophor El on the bioavailability of intraperitoneal paclitaxel. Clin Cancer Res. 2002;8(4):1237–41.

    PubMed  CAS  Google Scholar 

  113. Selvamuthukumar S, Anandam S, Krishnamoorthy K, Rajappan M. Nanosponges: a novel class of drug delivery system—review. J Pharm Pharm Sci. 2012;15(1):103–11.

    Google Scholar 

  114. Hugger ED, Novak BL, Burton PS, Audus KL, Borchardt RT. A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. J Pharm Sci. 2002;91(9):1991–2002.

    Article  PubMed  CAS  Google Scholar 

  115. Chakraborty S, Shukla D, Mishra B, Singh S. Lipid–an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm. 2009;73(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  116. O'Driscoll CM, Griffin BT. Biopharmaceutical challenges associated with drugs with low aqueous solubility—the potential impact of lipid-based formulations. Adv Drug Deliv Rev. 2008;60(6):617–24.

    Article  PubMed  Google Scholar 

  117. OECD. OECD Guiding Principles for Chemical Accident Prevention,Preparedness and Response. OECD; 2003 [cited 2014 17/03/2014]; Series on Chemical Accidents No. 10: [Available from: http://www.oecd.org/chemicalsafety/risk-management/Guiding-principles-chemical-accident.pdf.

Download references

Acknowledgments

Sanket M. Shah and Ankitkumar S. Jain are thankful to Piramal Enterprise Limited, Mumbai, India for providing financial assistance.

Conflict of Interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangal S. Nagarsenker.

Additional information

Sanket M. Shah and Ankitkumar S. Jain have contributed equally to the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.M., Jain, A.S., Kaushik, R. et al. Preclinical Formulations: Insight, Strategies, and Practical Considerations. AAPS PharmSciTech 15, 1307–1323 (2014). https://doi.org/10.1208/s12249-014-0156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0156-1

KEY WORDS

Navigation