Skip to main content
Log in

Formulation and In Vivo Evaluation of Orally Disintegrating Tablets of Clozapine/Hydroxypropyl-β-cyclodextrin Inclusion Complexes

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study was to improve the solubility and oral bioavailability of clozapine (CLZ), a poorly water-soluble drug subjected to substantial first-pass metabolism, employing cyclodextrin complexation technique. The inclusion complexes were prepared by an evaporation method. Phase solubility studies, differential scanning calorimetry, X-ray powder diffraction, and Fourier transform infrared spectroscopy were used to evaluate the complexation of CLZ with hydroxypropyl-β-cyclodextrin (HP-β-CD) and the formation of true inclusion complexes. Characterization and dissolution studies were carried out to evaluate the orally disintegrating tablets (ODTs) containing CLZ/HP-β-CD complexes prepared by direct compression. Finally, the bioavailability studies of the prepared ODTs were performed by oral administration to rabbits. The ODTs showed a higher in vitro dissolution rate and bioavailability compared with the commercial tablets. It is evident from the results herein that the developed ODTs provide a promising drug delivery system in drug development, owing to their excellent performance of a rapid onset of action, improved bioavailability, and good patient compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Sweetman SC. Martindale: the complete drug reference. 36th ed. London: Pharmaceutical Press; 2009. p. 768–71.

    Google Scholar 

  2. Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58:265–78.

    Article  PubMed  Google Scholar 

  3. Gerald KM. AHFS drug information. Bethesda: American Society of Health-System Pharmacists Press; 2004. p. 2273–85.

    Google Scholar 

  4. Seager H. Drug delivery products and the Zydis fast dissolving dosage forms. J Pharm Pharmacol. 1998;50:375–82.

    Article  CAS  PubMed  Google Scholar 

  5. Badgujar BP, Mundada AS. The technologies used for developing orally disintegrating tablets: a review. Acta Pharm. 2011;61:117–39.

    Article  CAS  PubMed  Google Scholar 

  6. Goel H, Rai P, Rana V, Tiwary AK. Orally disintegrating systems: innovations in formulation and technology. Recent Pat Drug Deliv Formul. 2008;2:258–74.

    Article  CAS  PubMed  Google Scholar 

  7. Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev. 1998;98:1743–54.

    Article  CAS  PubMed  Google Scholar 

  8. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev. 1998;98:2045–76.

    Article  CAS  PubMed  Google Scholar 

  9. Misiuk W, Zalewska M. Investigation of inclusion complex of trazodone hydrochloride with hydroxypropyl-β-cyclodextrin. Carbohydr Polym. 2009;77:482–8.

    Article  CAS  Google Scholar 

  10. Gould S, Scott RC. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem Toxicol. 2005;43:1451–9.

    Article  CAS  PubMed  Google Scholar 

  11. Higuchi T, Connors KA. Phase solubility techniques. Adv Anal Chem Instrum. 1965;4:117–212.

    CAS  Google Scholar 

  12. Yadav VR, Suresh S, Devi K, Yadav S. Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech. 2009;10:752–62.

    Article  CAS  PubMed  Google Scholar 

  13. Jain SK, Shukla M, Shrivastava V. Development and in vitro evaluation of ibuprofen mouth dissolving tablets using solid dispersion technique. Chem Pharm Bull. 2010;58:1037–42.

    Article  CAS  PubMed  Google Scholar 

  14. Rajitha K, Shravan KY, Adukondalu D, Ramesh G, Madhusudan Y. Formulation and evaluation of orally disintegrating tablets of buspirone. Int J Pharm Sci Nanotechnol. 2009;1:372–4.

    Google Scholar 

  15. US Food and Drug Administration. In vivo bioequivalence guidances. Pharmacopeial Forum. 1993;19:6501–8.

    Google Scholar 

  16. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85:1017–25.

    Article  CAS  PubMed  Google Scholar 

  17. Zornoza A, Martı́n C, Sánchez M, Vélaz I, Piquer A. Inclusion complexation of glisentide with α-, β- and γ-cyclodextrins. Int J Pharm. 1998;169:239–44.

    Article  CAS  Google Scholar 

  18. Fernandes CM, Teresa Vieira M, Veiga FJ. Physicochemical characterization and in vitro dissolution behavior of nicardipine-cyclodextrins inclusion compounds. Eur J Pharm Sci. 2002;15:79–88.

    Article  CAS  PubMed  Google Scholar 

  19. Carrier RL, Miller LA, Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability. J Control Release. 2007;123:78–99.

    Article  CAS  PubMed  Google Scholar 

  20. Cirri M, Righi MF, Maestrelli F, Mura P, Valleri M. Development of glyburide fast-dissolving tablets based on the combined use of cyclodextrins and polymers. Drug Dev Ind Pharm. 2009;35:73–82.

    Article  CAS  PubMed  Google Scholar 

  21. Cirri M, Rangoni C, Maestrelli F, Corti G, Mura P. Development of fast-dissolving tablets of flurbiprofen-cyclodextrin complexes. Drug Dev Ind Pharm. 2005;31:697–707.

    Article  CAS  PubMed  Google Scholar 

  22. Williams RO, Mahaguna V, Sriwongjanya M. Characterization of an inclusion complex of cholesterol and hydroxypropyl-beta-cyclodextrin. Eur J Pharm Biopharm. 1998;46:355–60.

    Article  CAS  PubMed  Google Scholar 

  23. Veiga F, Fernandes C, Maincent P. Influence of the preparation method on the physicochemical properties of tolbutamide/cyclodextrin binary systems. Drug Dev Ind Pharm. 2001;27:523–32.

    Article  CAS  PubMed  Google Scholar 

  24. Dali MM, Moench PA, Mathias NR, Stetsko PI, Heran CL, Smith RL. A rabbit model for sublingual drug delivery: comparison with human pharmacokinetic studies of propranolol, verapamil and captopril. J Pharm Sci. 2006;95:37–44.

    Article  CAS  PubMed  Google Scholar 

  25. Odou P, Barthelemy C, Chatelier D, Luyckx M, Brunet C, Dine T, et al. Pharmacokinetics of midazolam: comparison of sublingual and intravenous routes in rabbit. Eur J Drug Metab Pharmacokinet. 1999;24:1–7.

    Article  CAS  PubMed  Google Scholar 

  26. Nie S, Fan X, Peng Y, Yang X, Wang C, Pan W. In vitro and in vivo studies on the complexes of vinpocetine with hydroxypropyl-β-cyclodextrin. Arch Pharm Res. 2006;30:991–1001.

    Article  Google Scholar 

  27. Bekers O, Uijtendaal EV, Beijnen JH, Buit A, Under-berg WJM. Cyclodextrins in the pharmaceutical field. Drug Dev Ind Pharm. 1991;17:1503–49.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the College Students Innovation Project for the R&D of Novel Drugs (program no. J1030830) for supporting the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, F., Wang, L., Zhang, W. et al. Formulation and In Vivo Evaluation of Orally Disintegrating Tablets of Clozapine/Hydroxypropyl-β-cyclodextrin Inclusion Complexes. AAPS PharmSciTech 14, 854–860 (2013). https://doi.org/10.1208/s12249-013-9973-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-9973-x

KEY WORDS

Navigation