Skip to main content
Log in

Microscopic Modeling of País Grape Seed Extract Absorption in the Small Intestine

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The concentration profiles and the absorbed fraction (F) of the País grape seed extract in the human small intestine were obtained using a microscopic model simulation that accounts for the extracts' dissolution and absorption. To apply this model, the physical and chemical parameters of the grape seed extract solubility (C s), density (ρ), global mass transfer coefficient between the intestinal and blood content (k) (effective permeability), and diffusion coefficient (D) were experimentally evaluated. The diffusion coefficient (D = 3.45 × 10−6 ± 5 × 10−8 cm2/s) was approximately on the same order of magnitude as the coefficients of the relevant constituents. These results were chemically validated to discover that only the compounds with low molecular weights diffused across the membrane (mainly the (+)-catechin and (−)-epicatechin compounds). The model demonstrated that for the País grape seed extract, the dissolution process would proceed at a faster rate than the convective process. In addition, the absorbed fraction was elevated (F = 85.3%). The global mass transfer coefficient (k = 1.53 × 10−4 ± 5 × 10−6 cm/s) was a critical parameter in the absorption process, and minor changes drastically modified the prediction of the extract absorption. The simulation and experimental results show that the grape seed extract possesses the qualities of a potential phytodrug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Waterbeemd H, Testa B. Drug bioavailability. Weinheim: Wiley; 2009.

    Google Scholar 

  2. Dressman JB, Amidon GL, Fleisher D. Absorption potential: estimating the fraction absorbed for orally administered compounds. J Pharm Sci. 1985;74(5):588–9.

    Article  CAS  PubMed  Google Scholar 

  3. Macheras PE, Symillides MY. Toward a quantitative approach for the prediction of the fraction of dose absorbed using the absorption potential concept. Biopharm Drug Dispos. 1989;10(1):43–53. doi:10.1002/bdd.2510100106.

    Article  CAS  PubMed  Google Scholar 

  4. Sinko PJ, Leesman GD, Amidon GL. Predicting fraction dose absorbed in humans using a macroscopic mass balance approach. Pharm Res. 1991;8(8):979–88. doi:10.1023/a:1015892621261.

    Article  CAS  PubMed  Google Scholar 

  5. Oh DM, Curl RL, Amidon GL. Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans: a mathematical model. Pharm Res. 1993;10(2):264–70. doi:10.1023/a:1018947113238.

    Article  CAS  PubMed  Google Scholar 

  6. Eriz G, Sanhueza V, Roeckel M, Fernández K. Inhibition of the angiotensin-converting enzyme by grape seed and skin proanthocyanidins extracted from Vitis vinífera L. cv. País. LWT Food Sci Technol. 2011;44:860–5.

    Article  CAS  Google Scholar 

  7. Godoy S, Roeckel M, Fernandez K. Influence of the structure and composition of the Pais grape proanthocyanidins on the inhibition of angiotensin I-converting enzyme (ACE). Food Chem. 2012;134(1):346–50. doi:10.1016/j.foodchem.2012.02.171.

    Article  CAS  Google Scholar 

  8. Scribner AW, Loscalzo J, Napoli C. The effect of angiotensin-converting enzyme inhibition on endothelial function and oxidant stress. Eur J Pharmacol. 2003;482(1–3):95–9. doi:10.1016/j.ejphar.2003.10.002.

    Article  CAS  PubMed  Google Scholar 

  9. Jin P, Madieh S, Augsburger LL. Selected physical and chemical properties of Feverfew (Tanacetum parthenium) extracts important for formulated product quality and performance. AAPS PharmSciTech. 2008;9(1):22–30. doi:10.1208/s12249-007-9017-5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Belscak-Cvitanovic A, Benkovic M, Komes D, Bauman I, Horzic D, Dujmic F, et al. Physical properties and bioactive constituents of powdered mixtures and drinks prepared with cocoa and various sweeteners. J Agric Food Chem. 2010;58(12):7187–95. doi:10.1021/jf1005484.

    Article  CAS  PubMed  Google Scholar 

  11. Tharakan A, Norton IT, Fryer PJ, Bakalis S. Mass transfer and nutrient absorption in a simulated model of small intestine. J Food Sci. 2010;75(6):E339–46. doi:10.1111/j.1750-3841.2010.01659.x.

    Article  CAS  PubMed  Google Scholar 

  12. McDougall GJ, Fyffe S, Dobson P, Stewart D. Anthocyanins from red wine—their stability under simulated gastrointestinal digestion. Phytochemistry. 2005;66(21):2540–8.

    Article  CAS  PubMed  Google Scholar 

  13. Kumar KV, Karnati S, Reddy M. Caco-2 cell lines in drug discovery—an updated perspective. J Basic Clin Pharm. 2010;1(2):63–6.

    Google Scholar 

  14. Wu Y, Ma P, Liu Y, Li S. Diffusion coefficients of l-proline, l-threonine and l-arginine in aqueous solutions at 25°C. Fluid Phase Equilib. 2001;186(1–2):27–38. doi:10.1016/s0378-3812(01)00355-7.

    Article  CAS  Google Scholar 

  15. Lobo VMM, Ribeiro ACF, Verissimo LMP. Diffusion coefficients in aqueous solutions of potassium chloride at high and low concentrations. J Mol Liq. 1998;78(1–2):139–49. doi:10.1016/s0167-7322(98)00088-9.

    Article  CAS  Google Scholar 

  16. Jerez M, Pinelo M, Sineiro J, Nunez MJ. Influence of extraction conditions on phenolic yields from pine bark: assessment of procyanidins polymerization degree by thiolysis. Food Chem. 2006;94(3):406–14.

    Article  CAS  Google Scholar 

  17. Kennedy JA, Jones GP. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J Agric Food Chem. 2001;49(4):1740–6.

    Article  CAS  PubMed  Google Scholar 

  18. Cerpa-Calderon FK, Kennedy JA. Berry integrity and extraction of skin and seed proanthocyanidins during red wine fermentation. J Agric Food Chem. 2008;56(19):9006–14. doi:10.1021/jf801384v.

    Article  CAS  PubMed  Google Scholar 

  19. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20. doi:10.1023/a:1016212804288.

    Article  CAS  PubMed  Google Scholar 

  20. Gallo L, Llabot JM, Allemandi D, Bucalá V, Piña J. Influence of spray-drying operating conditions on Rhamnus purshiana (Cáscara sagrada) extract powder physical properties. Powder Technol. 2011;208(1):205–14. doi:10.1016/j.powtec.2010.12.021.

    Article  CAS  Google Scholar 

  21. Liu JC, Hsu FL, Tsai JC, Chan P, Ya-Hsin J, Liu G, et al. Antihypertensive effects of tannins isolated from traditional Chinese herbs as non-specific inhibitors of angiotensin converting enzyme. Life Sci. 2003;73(12):1543–55. doi:10.1016/S0024-3205(03)00481-8.

    Article  CAS  PubMed  Google Scholar 

  22. Mota FL, Queimada AJ, Pinho SP, Macedo EA. Aqueous solubility of some natural phenolic compounds. Ind Eng Chem Res. 2008;47(15):5182–9. doi:10.1021/ie071452o.

    Article  CAS  Google Scholar 

  23. Zakeri-Milani P, Valizadeh H, Tajerzadeh H, Azarmi Y, Islambolchilar Z, Barzegar S, et al. Predicting human intestinal permeability using single-pass intestinal perfusion in rat. J Pharm Pharm Sci. 2007;10(3):368–79.

    CAS  PubMed  Google Scholar 

  24. Tian XJ, Yang XW, Yang X, Wang K. Studies of intestinal permeability of 36 flavonoids using Caco-2 cell monolayer model. Int J Pharm. 2009;367(1–2):58–64. doi:10.1016/j.ijpharm.2008.09.023.

    Article  CAS  PubMed  Google Scholar 

  25. Ou K, Percival SS, Zou T, Khoo C, Gu L. Transport of cranberry A-type procyanidin dimers, trimers, and tetramers across monolayers of human intestinal epithelial Caco-2 cells. J Agric Food Chem. 2012;60(6):1390–6. doi:10.1021/jf2040912.

    Article  CAS  PubMed  Google Scholar 

  26. Cussler EL. Diffusion: mass transfer in fluid system. 2nd ed. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  27. Srinivas K, King JW, Howard LR, Monrad JK. Binary diffusion coefficients of phenolic compounds in subcritical water using a chromatographic peak broadening technique. Fluid Phase Equilib. 2011;301(2):234–43. doi:10.1016/j.fluid.2010.12.003.

    Article  CAS  Google Scholar 

  28. Yang C, Sang S, Lambert J, Lee MJ. Bioavailability issues in studying the health effects of plant polyphenolic compounds. Mol Nutr Food Res. 2008;52(1):S139–51.

    PubMed  Google Scholar 

  29. Lee MJ, Wang ZY, Li H, Chen L, Sun Y, Gobbo S, et al. Analysis of plasma and urinary tea polyphenols in human subjects. Cancer Epidemiol Biomarkers Prev: Publ Am Assoc Cancer Res cosponsored by the Am Soc Prev Oncol. 1995;4(4):393–9

Download references

ACKNOWLEDGMENTS

The authors thank the FONDECYT, Chile for the financial support of this investigation, project nos. 11080001 and 1120148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherina Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales, C., Roeckel, M. & Fernández, K. Microscopic Modeling of País Grape Seed Extract Absorption in the Small Intestine. AAPS PharmSciTech 15, 103–110 (2014). https://doi.org/10.1208/s12249-013-0045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-0045-z

KEY WORDS

Navigation