Skip to main content

Advertisement

Log in

Enhanced Antiproliferative Activity of the New Anticancer Candidate LPSF/AC04 in Cyclodextrin Inclusion Complexes Encapsulated into Liposomes

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

LPSF/AC04 (5Z)-[5-acridin-9-ylmethylene-3-(4-methyl-benzyl)-thiazolidine-2,4-dione] is an acridine-based derivative, part of a series of new anticancer agents synthesized for the purpose of developing more effective and less toxic anticancer drugs. However, the use of LPSF/AC04 is limited due to its low solubility in aqueous solutions. To overcome this problem, we investigated the interaction of LPSF/AC04 with hydroxypropyl-β-cyclodextrin (HP-β-CyD) and hydroxypropyl-γ-cyclodextrin (HP-γ-CyD) in inclusion complexes and determine which of the complexes formed presents the most significant interactions. In this paper, we report the physical characterization of the LPSF/AC04–HP-CyD inclusion complexes by thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy absorption, Raman spectroscopy, 1HNMR, scanning electron microscopy, and by molecular modeling approaches. In addition, we verified that HP-β-CyD complexation enhances the aqueous solubility of LPSF/AC04, and a significant increase in the antiproliferative activity of LPSF/AC04 against cell lines can be achieved by the encapsulation into liposomes. These findings showed that the nanoencapsulation of LPSF/AC04 and LPSF/AC04–HP-CyD inclusion complexes in liposomes leads to improved drug penetration into the cells and, as a result, an enhancement of cytotoxic activity. Further in vivo studies comparing free and encapsulated LPSF/AC04 will be undertaken to support this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Denny WA. Acridine derivatives as chemotherapeutic agents. Curr Med Chem. 2002;9:1655–65.

    Article  PubMed  CAS  Google Scholar 

  2. Goodell JR, Ougolkov AV, Hiasa H, Kaur H, Remmel R, Billadeu DD, et al. Acridine-based agents with topoisomerase II activity inhibit pancreatic cancer cell proliferation and induce apoptosis. J Med Chem. 2008;51:179–82.

    Article  PubMed  CAS  Google Scholar 

  3. Vispe S, Vandenberghe I, Robin M, Annereau JP, Créancier L, Pique V, et al. Novel tetra-acridine derivatives as dual inhibitors of topoisomerase II and the human proteasome. Biochem Pharmacol. 2007;73:1863–72.

    Article  PubMed  CAS  Google Scholar 

  4. Loise AC, Issel BF. Amsacrine (AMSA)—a clinical review. J Clin Oncol. 1985;3:562–92.

    Google Scholar 

  5. Chilin A, Marzaro G, Marzano C, Via LD, Ferlin MG, Pastorin G, et al. Synthesis and antitumor activity of novel amsacrine analogs: the critical role of the acridine moiety in determining their biological activity. Bioorg Med Chem. 2009;17:523–9.

    Article  PubMed  CAS  Google Scholar 

  6. Mourão RH, Silva TG, Soares AL, Vieira ES, Santos JN, Lima MCA, et al. Synthesis and biological activity of novel acridinylidene and benzylidene thiazolidinediones. Eur J Med Chem. 2005;40:1129–33.

    Article  PubMed  Google Scholar 

  7. Pitta IR, Galdino SL, Lima MCA. Acridine derivatives with antitumoral activity. Patent number WO/2007/109871. PCT/BR2007/000074. 2007.04.10. Federal University of Pernambuco, Recife, Brazil.

  8. Pigatto MC, Lima MCA, Galdino SL, Pitta IR, Vessecchi R, Assis MD, et al. Metabolism evaluation of the anticancer candidate AC04 by biomimetic oxidative model and rat liver microsomes. Eur J Med Chem. 2011;46:4245–51.

    Article  PubMed  CAS  Google Scholar 

  9. Loftsson T, Hreinsdóttir D, Másson M. Evaluation of cyclodextrin solubilization of drugs. Int J Pharm. 2005;302:18–28.

    Article  PubMed  CAS  Google Scholar 

  10. Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329:1–11.

    Article  PubMed  CAS  Google Scholar 

  11. Schuette JM, Dou TN, de la Peña AM, Greene KL, Williamson CK, Warner IM. Characterization of the β-cyclodextrin/acridine complex. J Phys Chem. 1991;95:4897–902.

    Article  CAS  Google Scholar 

  12. Correia I, Bezzenine N, Ronzani N, Platzer N, Beloeil J-C, Doan B-T. Study of inclusion complexes of acridine with β-and (2,6-di-o-methyl)-β-cyclodextrin by use of solubility diagrams and NMR spectroscopy. J Phys Org Chem. 2002;15:647–59.

    Article  CAS  Google Scholar 

  13. Mishur RJ, Griffin ME, Battle CH, Shan B, Jayawickramrajah J. Molecular recognition and enhancement of aqueous solubility and bioactivity of CD437 by β-cyclodextrin. Bioorg Med Chem Lett. 2011;21:857–60.

    Article  PubMed  CAS  Google Scholar 

  14. Al Omari AA, Al Omari MM, Badwan AA, Al-Sou’od KA. Effect of cyclodextrins on the solubility and stability of candesartan cilexetil in solution and solid state. J Pharm Biomed Anal. 2011;54:503–9.

    Article  PubMed  Google Scholar 

  15. Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006;58:1532–55.

    Article  PubMed  CAS  Google Scholar 

  16. McCormack B, Gregoriadis G. Drugs-in-cyclodextrins-in-liposomes: an approach to controlling the fate of water insoluble drugs in vivo. Int J Pharm. 1998;162:59–69.

    Article  CAS  Google Scholar 

  17. Loukas YL, Vraka V, Gregoriadis G. Drugs, in cyclodextrins, in liposomes: a novel approach to the chemical stability of drugs sensitive to hydrolysis. Int J Pharm. 1998;162:137–42.

    Article  CAS  Google Scholar 

  18. Maestrelli F, Gonzalez-Rodriguez ML, Rabasco AM, Mura P. New “drug-in cyclodextrin-in deformable liposomes” formulations to improve the therapeutic efficacy of local anesthetics. Int J Pharm. 2010;395:222–31.

    Article  PubMed  CAS  Google Scholar 

  19. Lira MCB, Ferraz MS, da Silva DGVC, Cortes ME, Teixeira KI, Caetano NP, et al. Inclusion complex of usnic acid with β-cyclodextrin: characterization and nanoencapsulation into liposomes. J Incl Phenom Macrocycl Chem. 2009;64:215–24.

    Article  CAS  Google Scholar 

  20. Cavalcanti IMF, Mendonça EAM, Lira MCB, Honrato SB, Amorim C, Amorim RVS, et al. The encapsulation of β-lapachone in 2-hydroxypropyl-β-cyclodextrin inclusion complex into liposomes: a physicochemical evaluation and molecular modeling approach. Eur J Pharm Sci. 2011;44:332–40.

    Article  PubMed  CAS  Google Scholar 

  21. Higuchi T, Connors KA. Phase-solubility techniques. Adv Anal Chem. 1965;4:117–212.

    CAS  Google Scholar 

  22. Mura P, Bettinetti G, Melani F, Manderioli A. Interaction between naproxen and chemically modified β-cyclodextrins in the liquid and solid state. Eur J Pharm Sci. 1995;3:347–55.

    Article  CAS  Google Scholar 

  23. Aicart E, Junqueira E. Complex formation between purine derivatives and cyclodextrins: a fluorescence spectroscopy study. J Incl Phenom Macrocycl Chem. 2003;47:161–5.

    Article  CAS  Google Scholar 

  24. Illapakurthy AC, Sabnis YA, Avery BA, Avery MA, Wyandt CM. Interaction of artemisinin and its related compounds with hydroxypropyl-β-cyclodextrin in solution state: experimental and molecular-modeling studies. J Pharm Sci. 2003;92:649–55.

    Article  PubMed  CAS  Google Scholar 

  25. Araújo MVG, Vieira EKB, Lázaro GS, Conegero LS, Almeida LE, Barreto LS, et al. Sulfadiazine/hydroxypropyl-β-cyclodextrin host–guest system: characterization, phase-solubility and molecular modeling. Bioorg Med Chem. 2008;16:5788–94.

    Article  PubMed  Google Scholar 

  26. Hao SY, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys. 2006;8:3172–91.

    Google Scholar 

  27. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application of proliferation and cytotoxicity assay. J Immunol Methods. 1983;65:55–63.

    Article  PubMed  CAS  Google Scholar 

  28. Pralhad T, Rajendrakumar K. Study of freeze-dried quercetin–cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J Pharm Biomed Anal. 2004;34:333–9.

    Article  PubMed  CAS  Google Scholar 

  29. Ribeiro A, Figueiras A, Santos D, Veiga F. Preparation and solid-state characterization of inclusion complex formed between miconazole and methyl-β-cyclodextrin. AAPS PharmSciTech. 2008;9:1102–9.

    Article  PubMed  CAS  Google Scholar 

  30. Aigner Z, Berkesi O, Farkas G, Szabo-Revesz P. DSC, X-ray and FTIR studies of a gemfibrozil/dimethyl-β-cyclodextrin inclusion complex produced by co-grinding. J Pharm Biomed Anal. 2012;57:62–7.

    Article  PubMed  CAS  Google Scholar 

  31. Sardo M, Amado AM, Ribeiro-Claro PJA. Inclusion compounds of phenol derivatives with cyclodextrins: a combined spectroscopic and thermal analysis. J Raman Spectrosc. 2009;40:1624–33.

    Article  CAS  Google Scholar 

  32. Loftsson T, Masson M, Brewster ME. Self-association of cyclodextrins and cyclodextrin complexes. J Pharm Sci. 2004;93:1091–9.

    Article  PubMed  CAS  Google Scholar 

  33. Upadhyay AK, Singh S, Chhipa RR, Vijayakumar MV, Ajay AK, Bhat MK. Methyl-β-cyclodextrin enhances the susceptibility of human breast cancer cells to carboplatin and 5-fluorouracil: involvement of Akt, NF-κB and Bcl-2. Toxicol Appl Pharmacol. 2006;2:177–85.

    Article  Google Scholar 

  34. Pourgholami MH, Wangoo KT, Morris DL. Albendazole–cyclodextrin complex: enhanced cytotoxicity in ovarian cancer cells. Anticancer Res. 2008;28:2775–80.

    PubMed  CAS  Google Scholar 

  35. Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, Tan G, et al. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine. 2012;8:440–51. doi:10.1016/j.nano2011.07.011.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The thermal analyses were performed at the Pharmaceutical Technology Laboratory of the UFPE Department of Pharmacy, with the kind collaboration of Dr. Pedro Rolim and the much appreciated technical assistance of Mrs. Larissa Rolim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nereide S. Santos-Magalhães.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendonça, E.A.M., Lira, M.C.B., Rabello, M.M. et al. Enhanced Antiproliferative Activity of the New Anticancer Candidate LPSF/AC04 in Cyclodextrin Inclusion Complexes Encapsulated into Liposomes. AAPS PharmSciTech 13, 1355–1366 (2012). https://doi.org/10.1208/s12249-012-9853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9853-9

KEY WORDS

Navigation