Skip to main content

Advertisement

Log in

Microemulsion-Based Gel of Terbinafine for the Treatment of Onychomycosis: Optimization of Formulation Using D-Optimal Design

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of the present investigation was to evaluate microemulsion as a vehicle for dermal drug delivery and to develop microemulsion-based gel of terbinafine for the treatment of onychomycosis. D-optimal mixture experimental design was adopted to optimize the amount of oil (X 1), Smix (mixture of surfactant and cosurfactant; X 2) and water (X 3) in the microemulsion. The formulations were assessed for globule size (in nanometers; Y 1) and solubility of drug in microemulsion (in milligrams per milliliter; Y 2). The microemulsion containing 5.75% oil, 53.75% surfactant–cosurfactant mixture and 40.5% water was selected as the optimized batch. The globule size and solubility of the optimized batch were 18.14 nm and 43.71 mg/ml, respectively. Transmission electron microscopy showed that globules were spherical in shape. Drug containing microemulsion was converted into gel employing 0.75% w/w carbopol 934P. The optimized gel showed better penetration and retention in the human cadaver skin as compared to the commercial cream. The cumulative amount of terbinafine permeated after 12 h was 244.65 ± 18.43 μg cm−2 which was three times more than the selected commercial cream. Terbinafine microemulsion in the gel form showed better activity against Candida albicans and Trichophyton rubrum than the commercial cream. It was concluded that drug-loaded gel could be a promising formulation for effective treatment of onychomycosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hui X, Shainhouse Z, Tanojo H, Anigbogu A, Markus GE, Maibach HI, Wester RC. Enhanced human nail drug delivery: nail inner drug content assayed by new unique method. J Pharm Sci. 2002;91(1):189–95. doi:10.1002/jps.10003.

    Article  PubMed  CAS  Google Scholar 

  2. Baran R, Gupta AK, Pierard GE. Pharmacotherapy of onychomycosis. Expert Opin Pharmacother. 2005;6(4):609–24. doi:10.1517/14656566.6.4.609.

    Article  PubMed  CAS  Google Scholar 

  3. Arrese JE, Pierard GE. Treatment failures and relapses in onychomycosis: a stubborn clinical problem. Dermatology. 2003;207(3):255–60. doi:10.1159/000073086.

    Article  PubMed  Google Scholar 

  4. Murdan S. Drug delivery to the nail following topical application. Int J Pharm. 2002;236(1–2):1–26. doi:10.1016/S0378-5173(01)00989-9.

    Article  PubMed  CAS  Google Scholar 

  5. Murdan S. 1st meeting on topical drug delivery to the nail. Expert Opin Drug Deliv. 2007;4(4):453–5. doi:10.1517/17425247.4.4.453.

    Article  PubMed  Google Scholar 

  6. Amichai B, Nitzan B, Mosckovitz R, Shemer A. Iontophoretic delivery of terbinafine in onychomycosis: a preliminary study. Br J Dermatol. 2010;162(1):46–50. doi:10.1111/j.1365-2133.2009.09414.x.

    Article  PubMed  CAS  Google Scholar 

  7. Sachdeva V, Siddoju S, Yu YY, Kim HD, Friden PM, Banga AK. Transdermal iontophoretic delivery of terbinafine hydrochloride: quantitation of drug levels in stratum corneum and underlying skin. Int J Pharm. 2010;388(1–2):24–31. doi:10.1016/j.ijpharm.2009.12.029.

    Article  PubMed  CAS  Google Scholar 

  8. Oon HH, Tan HH. Iontophoretic terbinafine delivery in onychomycosis: questionable nail growth. Br J Dermatol. 2010;162(3):699–700. doi:10.1111/j.1365-2133.2009.09605.x.

    Article  PubMed  CAS  Google Scholar 

  9. Nair AB, Vaka SR, Sammeta SM, Kim HD, Friden PM, Chakraborty B, Murthy SN. Trans-ungual iontophoretic delivery of terbinafine. J Pharm Sci. 2009;98(5):1788–96. doi:10.1002/jps.21555.

    Article  PubMed  CAS  Google Scholar 

  10. Murdan S. Enhancing the nail permeability of topically applied drugs. Expert Opin Drug Deliv. 2008;5(11):1267–82. doi:10.1517/17425240802497218.

    Article  PubMed  CAS  Google Scholar 

  11. Kumar S, Kimball AB. New antifungal therapies for the treatment of onychomycosis. Expert Opin Investig Drugs. 2009;18(6):727–34. doi:10.1517/13543780902810352.

    Article  PubMed  CAS  Google Scholar 

  12. Nair AB, Vaka SRK, Murthy SN. Transungual delivery of terbinafine by iontophoresis in onychomycotic nails. Drug Dev Ind Pharm. 2011;37(10):1253–8. doi:10.3109/03639045.2011.568946.

    Article  PubMed  CAS  Google Scholar 

  13. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45(1):89–121. doi:10.1016/S0169-409X(00)00103-4.

    Article  PubMed  CAS  Google Scholar 

  14. Ghosh PK, Murthy RS. Microemulsions: a potential drug delivery system. Curr Drug Deliv. 2006;3(2):167–80. doi:10.2174/156720106776359168.

    Article  PubMed  CAS  Google Scholar 

  15. Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev. 2002;54 Suppl 1:S77–98. doi:10.1016/S0169-409X(02)00116-3.

    Article  PubMed  CAS  Google Scholar 

  16. Patel MR, Patel RB, Parikh JR, Solanki AB, Patel BG. Effect of formulation components on the in vitro permeation of microemulsion drug delivery system of fluconazole. AAPS PharmSciTech. 2009;10(3):917–23. doi:10.1208/s12249-009-9286-2.

    Article  PubMed  CAS  Google Scholar 

  17. Mou D, Chen H, Du D, Mao C, Wan J, Xu H, Yang X. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int J Pharm. 2008;353(1–2):270–6. doi:10.1016/j.ijpharm.2007.11.051.

    Article  PubMed  CAS  Google Scholar 

  18. Chen H, Chang X, Du D, Li J, Xu H, Yang X. Microemulsion-based hydrogel formulation of ibuprofen for topical delivery. Int J Pharm. 2006;315(1–2):52–8. doi:10.1016/j.ijpharm.2006.02.015.

    Article  PubMed  CAS  Google Scholar 

  19. Chen H, Mou D, Du D, Chang X, Zhu D, Liu J, Xu H, Yang X. Hydrogel-thickened microemulsion for topical administration of drug molecule at an extremely low concentration. Int J Pharm. 2007;341(1–2):78–84. doi:10.1016/j.ijpharm.2007.03.052.

    Article  PubMed  CAS  Google Scholar 

  20. Lapasin R, Grassi M, Coceani N. Effects of polymer addition on the rheology of o/w microemulsions. Rheol Acta. 2001;40:185–92. doi:10.1007/s00397000051.

    Article  CAS  Google Scholar 

  21. Kawakami K, Yoshikawa T, Moroto Y, Kanaoka E, Takahashi K, Nishihara Y, Masuda K. Microemulsion formulation for enhanced absorption of poorly soluble drugs. I. Prescription design. J Control Release. 2002;81(1–2):65–74. doi:10.1016/S0168-3659(02)00049-4.

    Article  PubMed  CAS  Google Scholar 

  22. Leucuta SE, Bodea A. Optimization of hydrophilic matrix tablets using a D-optimal design. Int J Pharm. 1997;153(2):247–55. doi:10.1016/S0378-5173(97)00117-8.

    Article  Google Scholar 

  23. Holm R, Jensen IH, Sonnergaard J. Optimization of self-microemulsifying drug delivery systems (SMEDDS) using a D-optimal design and the desirability function. Drug Dev Ind Pharm. 2006;32(9):1025–32. doi:10.1080/03639040600559024.

    Article  PubMed  CAS  Google Scholar 

  24. Lewis GA, Mathieu D, Phan-Tan-Luu R. Mixtures in a constrained region of interest. In: Swarbrick J, editor. Pharmaceutical Experimental Design. New York: Marcel Dekker; 1999. p. 413–54.

    Google Scholar 

  25. Raza K, Negi P, Takyar S, Shukla A, Amarji B, Katare OP. Novel dithranol phospholipid microemulsion for topical application: development, characterization and percutaneous absorption studies. J Microencapsul. 2011;28(3):190–9. doi:10.3109/02652048.2010.546435.

    Article  PubMed  CAS  Google Scholar 

  26. Hui X, Wester RC, Maibach HI, Barbadillo S. Nail Penetration—Enhance Topical Delivery of Antifungal Drugs by Chemical Modification of the Human Nail. In: Bronaugh RL, Maibach HI, editors. Percutaneous absorption: drugs–cosmetics–mechanisms–methodology. 4th ed. Boca Raton: Taylor & Francis; 2005. p. 643–53.

    Google Scholar 

  27. Zhu W, Yu A, Wang W, Dong R, Wu J, Zhai G. Formulation design of microemulsion for dermal delivery of penciclovir. Int J Pharm. 2008;360(1–2):184–90. doi:10.1016/j.ijpharm.2008.04.008.

    Article  PubMed  CAS  Google Scholar 

  28. Larrucea E, Arellano A, Santoyo S, Ygartua P. Combined effect of oleic acid and propylene glycol on the percutaneous penetration of tenoxicam and its retention in the skin. Eur J Pharm Biopharm. 2001;52(2):113–9. doi:10.1016/S0939-6411(01)00158-8.

    Article  PubMed  CAS  Google Scholar 

  29. Hua L, Weisan P, Jiayu L, Ying Z. Preparation, evaluation, and NMR characterization of vinpocetine microemulsion for transdermal delivery. Drug Dev Ind Pharm. 2004;30(6):657–66. doi:10.1081/DDC-120039183.

    Article  PubMed  CAS  Google Scholar 

  30. Li H, Pan WS, Wu Z, Li JY, Xia LX. Optimization of microemulsion containing vinpocetine and its physicochemical properties. Yao Xue Xue Bao. 2004;39(9):681–5. doi:CNKI:SUN:YXXB.0.2004-09-002.

    PubMed  CAS  Google Scholar 

  31. Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A, Khar RK, Ali M. Formulation development and optimization using nanoemulsion technique: a technical note. AAPS PharmSciTech. 2007;8(2):E12–7. doi:10.1208/pt0802028.

    Article  Google Scholar 

  32. Ceschel G, Bergamante V, Maffei P, Borgia SL, Calabrese V, Biserni S, Ronchi C. Solubility and transdermal permeation properties of a dehydroepiandrosterone cyclodextrin complex from hydrophilic and lipophilic vehicles. Drug Deliv. 2005;12(5):275–80. doi:10.1080/10717540500176563.

    Article  PubMed  CAS  Google Scholar 

  33. El Maghraby GM. Transdermal delivery of hydrocortisone from eucalyptus oil microemulsion: effects of cosurfactants. Int J Pharm. 2008;355(1–2):285–92. doi:10.1016/j.ijpharm.2007.12.022.

    Article  PubMed  Google Scholar 

  34. Huang YB, Lin YH, Lu TM, Wang RJ, Tsai YH, Wu PC. Transdermal delivery of capsaicin derivative-sodium nonivamide acetate using microemulsions as vehicles. Int J Pharm. 2008;349(1–2):206–11. doi:10.1016/j.ijpharm.2007.07.022.

    Article  PubMed  CAS  Google Scholar 

  35. Peltola S, Saarinen-Savolainen P, Kiesvaara J, Suhonen TM, Urtti A. Microemulsions for topical delivery of estradiol. Int J Pharm. 2003;254(2):99–107. doi:10.1016/S0378-5173(02)00632-4.

    Article  PubMed  CAS  Google Scholar 

  36. Trotta M. Influence of phase transformation on indomethacin release from microemulsions. J Control Release. 1999;60(2–3):399–405. doi:10.1016/S0168-3659(99)00094-2.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Cadila Pharmaceuticals Ltd. (Ahmedabad, India) for providing terbinafine; Abitec Corporation (OH, USA) for providing Capmul MCM; and Gattefosse (Lyon, France) for providing the free samples of Labrasol, Labrafac, and Transcutol P. The authors are also thankful to Institute of Microbial Technology (Chandigarh, India) for providing the fungal strains. The authors are grateful to Mrs. Mallika Babu for proof-reading the manuscript for grammatical and spelling errors. This study is a part of research project, carried out at Kadi Sarva Vishwavidyalaya (Gandhinagar, India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavesh S. Barot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barot, B.S., Parejiya, P.B., Patel, H.K. et al. Microemulsion-Based Gel of Terbinafine for the Treatment of Onychomycosis: Optimization of Formulation Using D-Optimal Design. AAPS PharmSciTech 13, 184–192 (2012). https://doi.org/10.1208/s12249-011-9742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-011-9742-7

Key words

Navigation