Skip to main content
Log in

Sulfobutyl Ether7 β-Cyclodextrin (SBE7 β-CD) Carbamazepine Complex: Preparation, Characterization, Molecular Modeling, and Evaluation of In Vivo Anti-epileptic Activity

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of the present investigation was to study the ability of sulfobutyl ether7-β-cyclodextrin to form an inclusion complex with carbamazepine, an anti-epileptic drug with poor water solubility. The formation of the complex was carried out using the industrially feasible spray-drying method. The inclusion complex and physical mixtures were characterized by various techniques such as differential scanning calorimetry (DSC), infrared (IR), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and molecular modeling. The DSC, IR, and NMR studies confirmed the formation of an inclusion complex between carbamazepine and sulfobutyl ether7 β-cyclodextrin whereas XRD studies indicated an amorphous nature of the inclusion complex. Molecular modeling studies disclosed different modes of interaction between carbamazepine and sulfobutyl ether7 β-cyclodextrin with good correlation with experimental observations. The inclusion complex exhibited significantly higher in vitro dissolution profile as compared with pure carbamazepine powder. The in vivo anti-epileptic activity of carbamazepine/sulfobutyl ether7 β-cyclodextrin complex was evaluated in pentylenetetrazole-induced convulsions model. The carbamazepine/sulfobutyl ether7 β-cyclodextrin complex showed significantly higher anti-epileptic activity (p <0.01) as compared with that of carbamazepine suspension on oral administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bauer J, Monika BM, Reuber M. Treatment strategies for focal epilepsy. Expert Opin Pharmacother. 2009;10:743–53.

    Article  PubMed  CAS  Google Scholar 

  2. Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm. 2004;272:1–10.

    Article  PubMed  CAS  Google Scholar 

  3. Barakat N, Omar S, Ahmed A. Carbamazepine uptake into rat brain following intra-olfactory transport. J Pharm Pharmacol. 2006;58:63–72.

    Article  PubMed  CAS  Google Scholar 

  4. Kumineka G, Kratza J, Ribeiroa R, Kelmanna R, de Araújob B, Teixeirab H, et al. Pharmacokinetic study of a carbamazepine nanoemulsion in beagle dogs. Int J Pharm. 2009;378:146–8.

    Article  Google Scholar 

  5. Zerrouk N, Chemtob C, Arnaud P, Toscani S, Dugue J. In vitro and in vivo evaluation of carbamazepine-PEG 6000 solid dispersions. Int J Pharm. 2001;225:49–62.

    Article  PubMed  CAS  Google Scholar 

  6. El-Zein H, Riad L, Abd El-Bary A. Enhancement of carbamazepine dissolution: in vitro and in vivo evaluation. Int J Pharm. 1998;168:209–20.

    Article  CAS  Google Scholar 

  7. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59:645–66.

    Article  PubMed  CAS  Google Scholar 

  8. Fukuda M, Miller D, Peppas N, McGinity J. Influence of sulfobutyl ether β-cyclodextrin (Captisol®) on the dissolution properties of a poorly soluble drug from extrudates prepared by hot-melt extrusion. Int J Pharm. 2008;350:188–96.

    Article  PubMed  CAS  Google Scholar 

  9. Nagase Y, Hirata M, Arima H, Tajiri S, Nishimoto Y, Hirayama F, et al. Protective effect of sulfobutyl ether β-cyclodextrin on DY-9760e-induced hemolysis in vitro. J Pharm Sci. 2002;91:2382–9.

    Article  PubMed  CAS  Google Scholar 

  10. Tötterman AM, Schipper NGM, Thompson DO, Mannermaa JP. Intestinal safety of water-soluble β-cyclodextrins in paediatric oral solutions of spironolactone: effects on human intestinal epithelial Caco-2 cells. J Pharm Pharmacol. 1997;49:43–8.

    Article  PubMed  Google Scholar 

  11. Okimoto K, Ohike A, Ibuki R, Aoki O, Ohnishi N, Irie T, et al. Design and evaluation of an osmotic pump tablet (OPT) for chlorpromazine using (SBE)7 m-beta-CD. Pharm Res. 1999;16:549–54.

    Article  PubMed  CAS  Google Scholar 

  12. Kale R, Saraf M, Tayade P. Cyclodextrin complexes of valdecoxib: properties and anti-inflammatory activity in rat. Eur J Pharm Biopharm. 2005;60:39–46.

    Article  Google Scholar 

  13. Kale R, Tayade P, Saraf M, Juvekar A. Molecular encapsulation of thalidomide with sulfobutyl ether-7 beta-cyclodextrin for immediate release property:enhanced in vivo antitumor and antiangiogenesis efficacy in mice. Drug Dev Ind Pharm. 2008;34:149–56.

    Article  PubMed  CAS  Google Scholar 

  14. Smith JS, MacRae RJ, Snowden MJ. Effect of SBE-7-β-cyclodextrin complexation on carbamazepine release from sustained release beads. Eur J Pharm Biopharm. 2005;60:73–80.

    Article  PubMed  CAS  Google Scholar 

  15. Higuchi T, Connors KA. Phase-solubility techniques. Adv Anal Chem Instrum. 1965;4:117–212.

    CAS  Google Scholar 

  16. Figueiras A, Carvalho A, Ribeiro L, Torres-Labandeira J, Veiga F. Solid-state characterization and dissolution profiles of the inclusion complexes of omeprazole with native and chemically modified β-cyclodextrin. Eur J Pharm Biopharm. 2007;67:531–9.

    Article  PubMed  CAS  Google Scholar 

  17. Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E Water models at 298 K. J Phys Chem A. 2001;105:9954–60.

    Article  CAS  Google Scholar 

  18. Quigley D, Probert MIJ. Constant pressure Langevin dynamics: theory and application. Comp Phys Comm. 2005;169:322–5.

    Article  CAS  Google Scholar 

  19. Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J Comput Phys. 1977;23:327–41.

    Article  CAS  Google Scholar 

  20. Vogel HG, Vogel WH, Schoelkens BA, Sandow J, Mueller G, Vogel WF, editors. Drug discovery and evaluation: pharmacological assays. New York: Springer; 2008. p. 613.

  21. Moyano JR, Gines JM, Arias MJ, Robasco AM. Study of dissolution characteristic of oxazepam via complexation with β-cyclodextrin. Int J Pharm. 1995;114:95–102.

    Article  CAS  Google Scholar 

  22. Yang B, Lin J, Chen Y, Liu Y. Artemether/hydroxypropyl-beta-cyclodextrin host-guest system: characterization, phase-solubility and inclusion mode. Bioorg Med Chem. 2009;17:6311–7.

    Article  PubMed  CAS  Google Scholar 

  23. Zerrouk N, Toscani S, Gines-Dorado J-M, Chemtob C, Ceólin R, Dugué J. Interactions between carbamazepine and polyethylene glycol (PEG) 6000: characterisations of the physical, solid dispersed and eutectic mixtures. Eur J Pharm Sci. 2001;12:395–404.

    Article  Google Scholar 

  24. Blach P, Landy D, Fourmentin S, Surpateanu G, Bricout H, Ponchel A, et al. Sulfobutyl ether-β-cyclodextrins: promising supramolecular carriers for aqueous organometallic catalysis. Adv Synth Catal. 2005;347:1301–7.

    Article  CAS  Google Scholar 

  25. Jug M, Mennini N, Melani F, Maestrelli F, Mura P. Phase solubility, 1H NMR and molecular modelling studies of bupivacaine hydrochloride complexation with different cyclodextrin derivates. Chem Phys Lett. 2010;500:347–54.

    Article  CAS  Google Scholar 

  26. Zoppi A, Quevedo MA, Longhi MR. Specific binding capacity of β-cyclodextrin with cis and trans enalapril: physicochemical characterization and structural studies by molecular modeling. Bioorg Med Chem. 2008;16:8403–12.

    Article  PubMed  CAS  Google Scholar 

  27. Klioueva I, van Luijtelaar E, Chepurnova N, Chepurnov S. PTZ-induced seizures in rats: effects of age and strain. Physiol Behavior. 2001;72:421–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Novartis India Ltd., for the gift sample of carbamazepine and to Signette Chemicals, Mumbai, India for the gift samples of lactose. The authors would also like to thank Mr. Nimish Vador and Dr. Aarati Jagtap, Department of Pharmacology, Bombay College of Pharmacy for useful suggestions and help while conducting animal studies. The NMR and XRD facility provided by the Tata Institute of Fundamental Research, Mumbai is gratefully acknowledged. A. Jain is thankful to AICTE for Junior Research Fellowship and A. Date is thankful to Indian Council of Medical Research for Senior Research Fellowship. The computational facilities supported by the Department of Biotechnology (BT/TF-8/BRB/2009), Council for Scientific and Industrial Research (file no. 01/2399/10/EMRII), and Department of Science and Technology (SR/FST/LSI-163/2003), New Delhi, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangal S. Nagarsenker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A.S., Date, A.A., Pissurlenkar, R.R.S. et al. Sulfobutyl Ether7 β-Cyclodextrin (SBE7 β-CD) Carbamazepine Complex: Preparation, Characterization, Molecular Modeling, and Evaluation of In Vivo Anti-epileptic Activity. AAPS PharmSciTech 12, 1163–1175 (2011). https://doi.org/10.1208/s12249-011-9685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-011-9685-z

Key words

Navigation