Skip to main content
Log in

Evaluation of the Membrane Permeability (PAMPA and Skin) of Benzimidazoles with Potential Cannabinoid Activity and their Relation with the Biopharmaceutics Classification System (BCS)

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The permeability of five benzimidazole derivates with potential cannabinoid activity was determined in two models of membranes, parallel artificial membrane permeability assay (PAMPA) and skin, in order to study the relationship of the physicochemical properties of the molecules and characteristics of the membranes with the permeability defined by the Biopharmaceutics Classification System. It was established that the PAMPA intestinal absorption method is a good predictor for classifying these molecules as very permeable, independent of their thermodynamic solubility, if and only if these have a Log P oct value <3.0. In contrast, transdermal permeability is conditioned on the solubility of the molecule so that it can only serve as a model for classifying the permeability of molecules that possess high solubility (class I: high solubility, high permeability; class III: high solubility, low permeability).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amidon GL, Lennernas H, Shah VP, John RC. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo biovailability. Pharm Res. 1995;12(3):413–20.

    Article  PubMed  CAS  Google Scholar 

  2. Dressmann JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;15(1):11–22.

    Article  Google Scholar 

  3. Dahan A, Jonathan M, Miller JM, Amidon GL. Prediction of solubility and permeability class membership: provisional BCS classification of the world’s top oral drugs. AAPS J. 2009;11(4):740–6.

    Article  PubMed  CAS  Google Scholar 

  4. Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernais H, Hussain AS, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm. 2004;1(1):85–96.

    Article  PubMed  CAS  Google Scholar 

  5. Avendaño C. Introducción a la Química Farmacéutica. 2ath ed. Spain: McGraw Hill Interamericana; 2001.

    Google Scholar 

  6. Graham LP. An introduction to medicinal chemistry. 3ath ed. Oxford: Oxford University Press; 2005.

    Google Scholar 

  7. Hansch C, Leo A, Mekapati SC, Kurup A. QSAR and ADME. Bioorg Med Chem. 2004;12:391–40.

    Article  Google Scholar 

  8. Costas G, Tsantili-Kakoulidou A. Alternative measures of lipophilicity: from octanol–water partitioning to IAM retention. J Pharm Sci. 2008;97(8):2984–3004.

    Article  Google Scholar 

  9. Poole SK, Poole CF. Separation methods for estimating octanol–water partition coefficients. J Chromatogr B. 2003;797:3–19.

    Article  CAS  Google Scholar 

  10. Liu R, Zhou D. Using molecular fingerprint as descriptors in the QSPR study of lipophilicity. J Chem Inf. 2008;48:542–9.

    Article  CAS  Google Scholar 

  11. Fujikawa M, Ano K, Nakao K, Shimizu R, Akamatsu M. Relationships between structure and high throughput screening permeability of diverse drugs with artificial membranes: application to prediction of Caco-2 cell permeability. Bioorg Med Chem. 2005;13:4721–32.

    Article  PubMed  CAS  Google Scholar 

  12. Fujikawa M, Nakao K, Shimizu R, Akamatsu M. QSAR study on permeability of hydrophobic compounds with artificial membranes. Bioorg Med Chem. 2007;15:3756–67.

    Article  PubMed  CAS  Google Scholar 

  13. Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem. 1998;41(7):1007–10.

    Article  PubMed  CAS  Google Scholar 

  14. Sugano K, Nabuchi Y, Machida M, Aso Y. Prediction of human intestinal permeability using artificial membrane permeability. Int J Pharm. 2003;257:245–51.

    Article  PubMed  CAS  Google Scholar 

  15. Wohnsland F, Faller B. Throughput permeability ph profile and high throughput alkane/water log P with artificial membranes. J Med Chem. 2001;44:923–30.

    Article  PubMed  CAS  Google Scholar 

  16. Avdeef A, Bendels S, Di L, Faller B, Kansy M, Sugano K, et al. PAMPA—critical factors for better predictions of absorption. J Pharm Sci. 2007;96(11):2893–909.

    Article  PubMed  CAS  Google Scholar 

  17. Balimane PV, Pace E, Chong S, Zhu M, Jemal M, Pelt CK. A novel high-throughput automated chip-based nanoelectrospray tandem mass spectrometric method for PAMPA sample analysis. J Pharm Biomed Anal. 2005;39(1–2):8–16.

    Article  PubMed  CAS  Google Scholar 

  18. Bermejo M, Avdeef A, Ruiz A, Nalda R, Ruell JA, Tsinman O, et al. PAMPA—a drug absorption in vitro model 7. Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones. Eur J Pharm Sci. 2004;21:429–41.

    Article  PubMed  CAS  Google Scholar 

  19. Corti G, Maestrelli F, Cirri M, Zerrouk N, Mura P. Development and evaluation of an in vitro method for prediction of human drug absorption II. Demonstration of the method suitability. Eur J Pharm Sci. 2006;27:354–62.

    Article  PubMed  CAS  Google Scholar 

  20. Kansy M, Avdeef A, Fischer H. Advances in screening for membrane permeability: high-resolution PAMPA for medicinal chemists. Drug Discov Today Technol. 2004;1(4):349–55.

    Article  CAS  Google Scholar 

  21. Kerns EH, Di L, Petusky S, Farris M, Ley R, Jupp P. Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J Pharm Sci. 2004;93(6):1440–53.

    Article  PubMed  CAS  Google Scholar 

  22. Yamagami C, Kawase K, Iwaki K. Hydrophobicity parameters determined by reverse-phase liquid chromatography. XV: optimal conditions for prediction of log P oct by using RP-HPLC procedures. Chem Pharm Bull. 2002;50(12):1578–83.

    Article  PubMed  CAS  Google Scholar 

  23. Dias NC, Nawas MI, Poole CF. Evaluation of a reversed-phase column (Supelcosil LC-ABZ) under isocratic and gradient elution conditions for estimating octanol–water partition coefficients. Analyst. 2003;128:427–33.

    Article  PubMed  CAS  Google Scholar 

  24. Alvarez-Figueroa MJ, Pessoa-Mahana CD, González-Bustamante DA. Influence of lipophilia and of the vehicle used in the transdermal absorption of novel benzimidazole compounds with possible anti-HIV activity. Pharm Dev Technol. 2008;13:127–33.

    Article  PubMed  CAS  Google Scholar 

  25. Alvarez-Figueroa MJ, Araya-Silva I, Díaz-Tobar C. Iontophoretic transdermal delivery of haloperidol. Pharm Dev Technol. 2006;11:371–5.

    Article  PubMed  CAS  Google Scholar 

  26. Alvarez-Figueroa MJ, Blanco-Méndez J. Transdermal delivery of methotrexate: iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int J Pharmacogn. 2001;215:57–65.

    Article  CAS  Google Scholar 

  27. Bronaugh RL, Stewart RF. Methods for in vitro percutaneous absorption studies III: hydrophobic compounds. J Pharm Sci. 1984;73(9):1255–8.

    Article  PubMed  CAS  Google Scholar 

  28. Kerns EH, S Petusky, Farris M, Ley R, Jupp P. Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J Pharm Sci. 2004;93(6):1440–53.

    Article  PubMed  CAS  Google Scholar 

  29. Ruell JA, Tsinman KL, Avdeef A. PAMPA—a drug absorption in vitro model 5. Unstirred water layer in iso-pH mapping assays and pKaflux-optimized design (pOD-PAMPA). Eur J Pharm Sci. 2003;20:393–402.

    Article  PubMed  CAS  Google Scholar 

  30. Fischer H, Kansy M, Avdeef A, Senner F. Permeation of permanently positive charged molecules through artificial membranes—influence of physico-chemical properties. Eur J Pharm Sci. 2007;31:32–42.

    Article  PubMed  CAS  Google Scholar 

  31. Brain-Isasi S, Quezada C, Pessoa H, Morello A, Kogan MJ, Álvarez-Lueje A. Determination and characterization of new benzimidazoles with activity against Trypanosoma cruzi by UV spectroscopy and HPLC. Bioorg Med Chem. 2008;16:7622–30.

    Article  PubMed  CAS  Google Scholar 

  32. Zheng XS, Duan CZ, Xiao ZD, Yao BA. Transdermal delivery of praziquantel: effects of solvents on permeation across rabbit skin. Biol Pharm Bull. 2008;31(5):1045–8.

    Article  PubMed  CAS  Google Scholar 

  33. Subedi RK, Oh SY, Chun M-K, Choi H-K. Recent advances in transdermal drug delivery. Arch Pharm Res. 2010;33(3):339–51.

    Article  PubMed  CAS  Google Scholar 

  34. Barry B. Farmacia, la ciencia del diseño de las formas farmacéuticas. Chapter 33: Administración de fármacos por vía transdérmica. M.E. Aulton (ed). Elsevier España S.A., 2004 second edition. p. 499–533.

  35. Guy RH. Transdermal drug delivery. Hand Exp Pharmacol. 2010;197:399–410.

    Article  CAS  Google Scholar 

  36. Barry BW. Is the transdermal drug delivery research still important today? DDT. 2001;6(19):967–71.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Faculty of Chemistry of the Pontificia Universidad Católica de Chile and FONDECYT (grant 1100493).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Javiera Alvarez-Figueroa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez-Figueroa, M.J., Pessoa-Mahana, C.D., Palavecino-González, M.E. et al. Evaluation of the Membrane Permeability (PAMPA and Skin) of Benzimidazoles with Potential Cannabinoid Activity and their Relation with the Biopharmaceutics Classification System (BCS). AAPS PharmSciTech 12, 573–578 (2011). https://doi.org/10.1208/s12249-011-9622-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-011-9622-1

Key words

Navigation