Skip to main content
Log in

Response Surface Methodology to Optimize Novel Fast Disintegrating Tablets Using β Cyclodextrin as Diluent

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of this work was to apply response surface approach to investigate main and interaction effects of formulation parameters in optimizing novel fast disintegrating tablet formulation using β cyclodextrin as a diluent. The variables studied were diluent (β cyclodextrin, X 1), superdisintegrant (Croscarmellose sodium, X 2), and direct compression aid (Spray dried lactose, X 3). Tablets were prepared by direct compression method on B2 rotary tablet press using flat plain-face punches and characterized for weight variation, thickness, disintegration time (Y 1), and hardness (Y 2). Disintegration time was strongly affected by quadratic terms of β cyclodextrin, croscarmellose sodium, and spray-dried lactose. The positive value of regression coefficient for β cyclodextrin suggested that hardness increased with increased amount of β cyclodextrin. In general, disintegration of tablets has been reported to slow down with increase in hardness. However in the present study, higher concentration of β cyclodextrin was found to improve tablet hardness without increasing the disintegration time. Thus, β cyclodextrin is proposed as a suitable diluent to achieve fast disintegrating tablets with sufficient hardness. Good correlation between the predicted values and experimental data of the optimized formulation validated prognostic ability of response surface methodology in optimizing fast disintegrating tablets using β cyclodextrin as a diluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seager H. Drug delivery products and the Zydis fast dissolving dosage. J Pharm Pharmacol. 1998;50:375–82.

    CAS  PubMed  Google Scholar 

  2. Dobetti L. Fast melting tablets: developments and technologies. Pharm Technol Drug Deliv. 2001;44–50.

  3. Fu Y, Yang S, Jeong SH, Kimura K, Park K. Orally fast disintegrating tablets: development, technologies, taste-masking and clinical studies. Crit Rev Ther Drug Carr Syst. 2004;21:433–75.

    Article  CAS  Google Scholar 

  4. Wilson CG, Washington N, Peach J, Murray GR, Kennerly J. The behavior of a fast-dissolving dosage form (Expidet) followed by g-scintigraphy. Int J Pharm. 1987;40:119–23.

    Article  CAS  Google Scholar 

  5. Bolhuis GK, Armstrong NA. Excipients for direct compression—an update. Pharm Dev Technol. 2006;11:111–24.

    Article  CAS  PubMed  Google Scholar 

  6. Roche-Johnson J, Wang LH, Gordon MS, Chowhan ZT. Effect of formulation solubility and hygroscopicity on disintegrant efficiency in tablets prepared by wet granulation, in terms of dissolution. J Pharm Sci. 1991;80:469–71.

    Article  Google Scholar 

  7. Dobetti L, Fast disintegrating tablets. US Patent 6,596,311 (2003).

  8. Bi Y, Sunada H, Yonezawa Y, Danjo K, Otsuka A, Iida K. Preparation and evaluation of a compressed tablet rapidly disintegrating in the oral cavity. Chem Pharm Bull. 1996;44:2121–7.

    CAS  PubMed  Google Scholar 

  9. Ghorab MM, Abdel-Salem HM, El-Sayed MA, Mekhel MM. Tablet formulation containing meloxicam and β cyclodextrin: mechanical characterization and bioavailability evaluation. AAPS PharmSciTech. 2004;5:E59.

    Article  PubMed  Google Scholar 

  10. Wade A, Weller PJ. Handbook of pharmaceutical excipients. London: The Pharmaceutical Press; 1994.

    Google Scholar 

  11. Upasani RS, Banga AK. Response surface methodology to investigate the iontophoretic delivery of tacrine hydrochloride. Pharm Res. 2004;21:2293–9.

    Article  CAS  PubMed  Google Scholar 

  12. Branchu SRT, Forbes P, York H, Branchu S, Forbes RT, York P, et al. A central composite design to investigate the thermal stabilization of lysozyme. Pharm Res. 1999;16:702–8.

    Article  CAS  PubMed  Google Scholar 

  13. Budavari S. The merck index. NJ: Merck & Co. Inc.; 1989.

    Google Scholar 

  14. Clarke SE, Austin NE, Bloomer JC, Haddock RE, Higham FC, Hollis FJ, et al. Metabolism and disposition of 14 C-granisetron in rat, dog, and man after intravenous and oral dosing. Xenobiotica. 1994;24:1119–31.

    Article  CAS  PubMed  Google Scholar 

  15. Fu Y, Jeong SH, Park K. Preparation of fast-dissolving tablets based on mannose. C S Symp Ser. 2006;924:340–51.

    CAS  Google Scholar 

  16. Khankari R, Hontz J, Chastain S, Katzner L. Rapidly dissolving robust dosage form. US Patent 6,221,392 (2001).

  17. Wehling F, Schuele S, Madamala N. Effervescent dosage forms with microparticles. US Patent 5,178,878 (1993).

  18. Shangraw RF, Pande S, Gala P. Characterization of the tableting properties of β Cyclodextrin and the effects of processing variables on inclusion complex, compactibility and dissolution. Drug Dev Ind Pharm. 1992;18:1831–51.

    Article  CAS  Google Scholar 

  19. Rekhi GS, Nellore RV, Hussain AS, Tillman LG, Malinowski HJ, Augsburger LL. Identification of critical formulation and processing variables for metoprolol tartrate extended-release (ER) matrix tablets. J Control Rel. 1999;59:327–42.

    Article  CAS  Google Scholar 

  20. Saleh SI. β-Cyclodextrin as a direct compression excipient compared to conventional ones. J Pharm Sci. 1993;48:371–7.

    CAS  Google Scholar 

  21. Sunada H, Bi Y. Preparation, evaluation and optimization of rapidly disintegrating tablets. Powder Technol. 2002;122:188–98.

    Article  CAS  Google Scholar 

  22. Gissinger D, Stamm A. Comparative evaluation of the properties of some tablet disintegrants. Drug Dev Ind Pharm. 1980;6:419–30.

    Article  Google Scholar 

  23. ElShaboury MH. Physical properties and dissolution profiles of tablets directly compressed with β-cyclodextrin. Int J Pharm. 1990;63:95–100.

    Article  CAS  Google Scholar 

  24. Caramella C, Colombo P, Conte U, Ferrari F, la Manna A. Water uptake and disintegration force measurements: towards a general understanding of disintegration mechanism. Drug Dev Ind Pharm. 1986;12:1749–66.

    Article  CAS  Google Scholar 

  25. Ferrari F, Bertoni M, Bonferoni MC, Rossi S, Caramella C, Nystrom C. Investigation on bonding and disintegration properties of pharmaceutical materials. Int J Pharm. 1996;136:71–9.

    Article  CAS  Google Scholar 

  26. Mattsson S, Bredenberg S, Nystrom C. Formulation of high tensile strength rapidly disintegrating tablets: evaluation of the effect of some binder properties. S T P Pharm Sci. 2001;11:211–20.

    CAS  Google Scholar 

  27. Gordon MS, Chowhan ZT. Effect of tablet solubility and hygroscopicity on disintegrant efficiency in direct compression tablets in terms of dissolution. J Pharm Sci. 1987;76:907–9.

    CAS  PubMed  Google Scholar 

  28. Lopes-Solis J, Villafuerte-Robles L. Effect of disintegrants with different hygroscopicity on dissolution of Norfloxacin/Pharmatose DCL 11 tablets. Int J Pharm. 2001;216:127–35.

    Article  Google Scholar 

  29. Chebli C, Cartilier L. Cross-linked cellulose as a tablet excipient: a binding/disintegrating agent. Int J Pharm. 1998;171:101–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the manufacturers for providing the fast disintegrating tablet samples. The authors also wish to thank Ms. Yi-Ying Yu and Dr. Guohua Li, Mercer University for their help in revising the manuscript and in obtaining stereomicroscopic pictures, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer G. Late.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Late, S.G., Banga, A.K. Response Surface Methodology to Optimize Novel Fast Disintegrating Tablets Using β Cyclodextrin as Diluent. AAPS PharmSciTech 11, 1627–1635 (2010). https://doi.org/10.1208/s12249-010-9541-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9541-6

Key words

Navigation