Skip to main content
Log in

Factors Affecting the Chemical Durability of Glass Used in the Pharmaceutical Industry

AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Delamination, or the generation of glass flakes in vials used to contain parenteral drug products, continues to be a persistent problem in the pharmaceutical industry. To understand all of the factors that might contribute to delamination, a statistical design of experiments was implemented to describe this loss of chemical integrity for glass vials. Phase I of this study focused on the effects of thermal exposure (prior to product filling) on the surface chemistry of glass vials. Even though such temperatures are below the glass transition temperature for the glass, and parenteral compounds are injected directly into the body, data must be collected to show that the glass was not phase separating. Phase II of these studies examined the combined effects of thermal exposure, glass chemistry, and exposure to pharmaceutically relevant molecules on glass delamination. A variety of tools was used to examine the glass and the solution contained in the vial including: scanning electron microscopy and dynamic secondary ion mass spectroscopy for the glass; and visual examination, pH measurements, laser particle counting, and inductively coupled plasma–optical emission spectrometry for the analysis of the solution. The combined results of phase I and II showed depyrogenation does not play a significant role in delamination. Terminal sterilization, glass chemistry, and solution chemistry are the key factors in the generation of glass flakes. Dissolution of silica may be an effective indicator that delamination will occur with a given liquid stored in glass. Finally, delamination should not be defined by the appearance of visible glass particulates. There is a mechanical component in the delamination process whereby the flakes must break away from the interior vial surface. Delamination should be defined by the observation of flakes on the interior surface of the vial, which can be detected by several other analytical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Roseman TJ, Brown JA, Scothorn WW. Glass for parenteral products: a surface view using the scanning electron microscope. J Pharm Sci. 1976;65(1):22–9.

    Article  CAS  PubMed  Google Scholar 

  2. Ennis RD, Pritchard R, Nakamura C, Coulon M, Taiyin Y, Visor GC, et al. Glass vials for small volume parenterals: influence of drug and manufacturing processes on glass delamination. Pharm Dev Technol. 2001;6(3):393–405.

    Article  CAS  PubMed  Google Scholar 

  3. Dimbley B. Glass for pharmaceutical purposes. J Pharm Pharmacol. 1953;5:969–89.

    Google Scholar 

  4. Adams PB. Surface properties of glass containers for parenteral solutions. Bull Parenter Drug Assoc. 1977;31(5):213–25.

    CAS  PubMed  Google Scholar 

  5. Abernethy S, Dowd N, Bochert S, Butler DA, Clayton R, Eckhart C, et al. Glass: isolation and identificaiton of extractables from usp grade glass. J Parenter Sci Technol. 1986;40(supplement):S3–11.

    Google Scholar 

  6. Hinson AL. Flouride washing of glass containers. Bull Parenter Drug Assoc. 1971;25(6):266–9.

    CAS  PubMed  Google Scholar 

  7. Yamanaka Y, Akagi J, Hattori M. Reaction of pyrex type borosilicate glass with water in autoclave. J Non-Cryst Solids. 1985;70:279–90.

    Article  CAS  Google Scholar 

  8. Brown JB, Watts AS. Some studies on reactions between glasses and phosphate solution. J Am Ceram Soc. 1937;20:245–50.

    Article  CAS  Google Scholar 

  9. Bacon FR, Raggon FC. Promotion of attack on glass and silica by citrate and other anions in neutral solution. J Am Ceram Soc. 1959;42(4):199–205.

    Article  CAS  Google Scholar 

  10. Tian L, Dieckmann R, Hui C-Y, Lin Y-Y. Effect of water incorporation on the diffusion of sodium in type I silica glass. J Non-Cryst Solids. 2001;286:146–61.

    Article  CAS  Google Scholar 

  11. Doremus RH. Diffusion of water in rhyolite glass: diffusion-reaction model. J Non-Cryst Solids. 2000;261:101–7.

    Article  CAS  Google Scholar 

  12. Tomozawa M. Water in glass. J Non-Cryst Solids. 1985;73:197–204.

    Article  CAS  Google Scholar 

  13. Doremus RH. Chemical durability of glass. Treatise on materials science and technology. New York: Academic; 1979. p. 41–69.

    Google Scholar 

  14. Doremus RH. Diffusion of water in glass. J Mater Res. 1995;10(9):2379–89.

    Article  CAS  Google Scholar 

  15. Agarwal A, Tomozawa M, Lanford WA. Effect of stress on water diffusion in silica glass at various temperatures. J Non-Cryst Solids. 1994;167:139–48.

    Article  CAS  Google Scholar 

  16. Nogami M, Tomozawa M. Effect of stress on water diffusion in silica glass. J Am Ceram Soc. 1984;67(2):151–4.

    Article  CAS  Google Scholar 

  17. Wakabayashi H, Tomozawa M. Diffusion of water into silica at low temperature. J Am Ceram Soc. 1989;72(10):1850–5.

    Article  CAS  Google Scholar 

  18. Tomozawa M. Stress corrosion reaction of silica glass and water. Phys Chem Glasses. 1998;39(2):65–9.

    CAS  Google Scholar 

  19. Tomozawa H, Tomozawa M. Diffusion of water into a borosilicate glass. J Non-Cryst Solids. 1989;109:311–7.

    Article  CAS  Google Scholar 

  20. Smets BMJ, Lommen MG. The role of molecular water in the leaching of glass. Phys Chem Glasses. 1982;24(1):35–6.

    Google Scholar 

  21. White WB. Theory of corrosion of glass and ceramics. In: Clark DE, Zoitos BK, editors. Corrosion of glass, ceramics and ceramic superconductors: principles, testing, characterization, and applications. Park Ridge: Noyes Publications; 1992. p. 2–28.

    Google Scholar 

  22. Baer DR, Pederson LR, McVay GL. Glass reactivity in aqueous solutions. J Vac Sci Technol. 1984;A2:738–43.

    Google Scholar 

  23. Gy R. Stress corrosion of silicate glass: a review. J Non-Cryst Solids. 2003;316:1–11.

    Article  CAS  Google Scholar 

  24. Chene J, Trocellier P. Investigation of alkali borosilicate glass durability using tritium tracing, beta-autoradiography, scanning electron microscopy, and ion beam analysis. J Non-Cryst Solids. 2004;337:86–96.

    Article  CAS  Google Scholar 

  25. Hair ML, Chapman ID. Surface composition of porous glass. J Am Ceram Soc. 1966;49(12):651–4.

    Article  CAS  Google Scholar 

  26. Iacocca RG, Allgeier MA. Corrosive attack of glass by a pharmaceutical compound. J Mater Sci. 2007;42(3):801–11.

    Article  CAS  Google Scholar 

  27. Borchert SJ, Ryan MM. Accelerated extractable studies of borosilicate containers. J Parenter Sci Technol. 1989;43(2):67–79.

    CAS  PubMed  Google Scholar 

  28. Branda F, Laudisio G, Constantini A, Piccioli C. Weathering of a roman glass: a new hypothesis for pit formation on glass surfaces. Glass Technol. 1999;40(3):89–91.

    CAS  Google Scholar 

  29. Gillies KJS, Cox A. Decay of medieval stained glass at york, canterbury, and carlisle: Part 2. Relationship between the composition of the glass, its durability and the weathering products. Glastech Ber. 1988;61(4):101–7.

    CAS  Google Scholar 

  30. Rogers P, McPhail D, Ryan J. A quantitative study of decay processes of venetian glass in a museum environment. Glass Technol. 1993;34(2):67–8.

    CAS  Google Scholar 

  31. Schreiner M. Deterioration of stained medieval glass by atmospheric attack. Glastech Ber. 1988;61(7):197–204.

    CAS  Google Scholar 

  32. Hsu AT, Jemian WA, Wilcox RC. Solvent effect of water on S-glass. J Mater Sci. 1976;11:2099–104.

    Article  CAS  Google Scholar 

  33. Iler RK. The chemistry of silica. New York: Wiley-Interscience; 1979.

    Google Scholar 

  34. Baumann H. Solubility of silica in water. Beitr Silikose-Forsch. 1955;37:47.

    Google Scholar 

  35. Cherkinskii YS, Knyaz ' kova IS. Dokl Akad Nauk SSSR. 1971;198:358.

    Google Scholar 

  36. Bunker BC. Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids. 1994;179(pt 3):300–8.

    Article  CAS  Google Scholar 

  37. Batyrev IG, Tuttle B, Fleetwood DM, Schrimpf RD, Tsetseris L, Pantelides ST. Reactions of water molecules in silica-based network glasses. Phys Rev Lett. 2008.100(10):105503:1–8.

    Google Scholar 

  38. Gin S, Gordon N, Mestre JP, Vernaz EY, Beaufort D. Espericamental investigation of aqueous corrosion of R7T7 nuclear glass at 90°C in the presence of organic species. Appl Geochem. 1994;9(3):255–69.

    Article  CAS  Google Scholar 

  39. Ramachandran BE, Balasubramanian N, Rao GV, Aravamudan G. Effect of organic acids on e-glass fabric. J Am Ceram Soc. 1981;64(9):C122–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to recognize the help of Dr. Jean Buckwalter and Ms. Sally Belknap in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald G. Iacocca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iacocca, R.G., Toltl, N., Allgeier, M. et al. Factors Affecting the Chemical Durability of Glass Used in the Pharmaceutical Industry. AAPS PharmSciTech 11, 1340–1349 (2010). https://doi.org/10.1208/s12249-010-9506-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9506-9

Key words

Navigation