Skip to main content

Advertisement

Log in

Formulation of Dacarbazine-loaded Cubosomes. Part III. Physicochemical Characterization

AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the physicochemical properties of dacarbazine-loaded cubosomes. The drug-loaded cubosome nanocarriers were prepared by a fragmentation method and then freeze dried. They were then characterized for size, morphology, thermal behavior, and crystallography using dynamic light scattering, transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD), respectively. The drug loading and encapsulation efficiency were determined by UV spectrophotometry. The results showed that the prepared dacarbazine-loaded cubosomes had mean diameters ranging from 86 to 106 nm. In addition to the TEM, the characteristic peaks from PXRD data suggested that the freeze-dried nanoformulations were indeed cubic in nature. DSC and PXRD analysis suggested the 0.06 or 0.28% w/w actual drug loaded inside cubosomes was in the amorphous or molecular state. These physicochemical characteristics would affect the nanoformulation shelf-life, efficacy, and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. Chiappetta DA, Carcaboso AM, Bregni C, Rubio M, Bramuglia G, Sosnik A. Indinavir-loaded pH-sensitive microparticles for taste masking: toward extemporaneous pediatric anti-HIV/AIDS liquid formulations with improved patient compliance. AAPS PharmSciTech. 2009;10(1):1–6.

    Article  PubMed  Google Scholar 

  2. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.

    Article  PubMed  Google Scholar 

  3. Abdelkader H, Abdalla OY, Salem H. Formulation of controlled-release baclofen matrix tablets: influence of some hydrophilic polymers on the release rate and in vitro evaluation. AAPS PharmSciTech. 2007;8(4):E100.

    Article  PubMed  Google Scholar 

  4. Kaewnopparat S, Sansernluk K, Faroongsarng D. Behavior of freezable bound water in the bacterial cellulose produced by Acetobacter xylinum: an approach using thermoporosimetry. AAPS PharmSciTech. 2008;9(2):701–7.

    Article  PubMed  Google Scholar 

  5. Ghassempour A, Rafati H, Adlnasab L, Bashour Y, Ebrahimzadeh H, Erfan M. Investigation of the solid state properties of amoxicillin trihydrate and the effect of powder pH. AAPS PharmSciTech. 2007;8(4):E93.

    Article  PubMed  Google Scholar 

  6. Van Eerdenbrugh B, Stuyven B, Froyen L, Van Humbeeck J, Martens JA, Augustijns P, et al. Downscaling drug nanosuspension production: processing aspects and physicochemical characterization. AAPS PharmSciTech. 2009;10(1):44–53.

    Article  PubMed  Google Scholar 

  7. Spieth K, Kaufmann R, Dummer R, Garbe C, Becker JC, Hauschild A, et al. Temozolomide plus pegylated interferon alfa-2b as first-line treatment for stage IV melanoma: a multicenter phase II trial of the Dermatologic Cooperative Oncology Group (DeCOG). Ann Oncol. 2008;19(4):801–6.

    Article  PubMed  Google Scholar 

  8. Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Brocker EB, et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol. 2006;17(4):563–70.

    Article  PubMed  Google Scholar 

  9. Lens MB, Eisen TG. Systemic chemotherapy in the treatment of malignant melanoma. Expert Opin Pharmacother. 2003;4(12):2205–11.

    Article  PubMed  Google Scholar 

  10. Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 2000;18(1):158–66.

    PubMed  Google Scholar 

  11. Connors TA, Goddard PM, Merai K, Ross WC, Wilman DE. Tumour inhibitory triazenes: structural requirements for an active metabolite. Biochem Pharmacol. 1976;25(3):241–6.

    Article  PubMed  Google Scholar 

  12. Shah JC, Sadhale Y, Chilukuri DM. Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev. 2001;47(2–3):229–50.

    Article  PubMed  Google Scholar 

  13. Patton JS, Carey MC. Watching fat digestion. Science (New York, NY). 1979;204(4389):145–8.

    Google Scholar 

  14. Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science (New York, NY). 1997;277(5332):1676–81.

    Google Scholar 

  15. Landau EM, Rosenbusch JP. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci USA. 1996;93(25):14532–5.

    Article  PubMed  Google Scholar 

  16. Muller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59(6):522–30.

    Article  PubMed  Google Scholar 

  17. Esposito E, Eblovi N, Rasi S, Drechsler M, Di Gregorio GM, Menegatti E, et al. Lipid-based supramolecular systems for topical application: a preformulatory study. AAPS PharmSci. 2003;5(4):E30.

    Article  PubMed  Google Scholar 

  18. Bei D, Marszalek J, Youan BB. Formulation of dacarbazine-loaded cubosomes-part I: influence of formulation variables. AAPS PharmSciTech. 2009;10(3):1032–9.

    Article  PubMed  Google Scholar 

  19. Bei D, Marszalek J, Youan BB. Formulation of dacarbazine-loaded cubosomes—part II: influence of process parameters. AAPS PharmSciTech. 2009;10(3):1040–7.

    Article  PubMed  Google Scholar 

  20. Hackley VaF CF. The use of nomenclature in dispersion science and technology, NIST recommended practice guide. SP. 2001;960(3):76.

    Google Scholar 

  21. Briggs J, Chung H, Caffrey M. The temperature composition phase diagram and mesophase structure characterization of the monoolein/water system. J Phys II France. 1996;6:723–51.

    Article  Google Scholar 

  22. Qiu H, Caffrey M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials. 2000;21(3):223–34.

    Article  PubMed  Google Scholar 

  23. Lutton ES. Phase behavior of aqueous systems of monoglycerides. J Am Oil Chem Soc. 1965;42(12):1068–70.

    Article  PubMed  Google Scholar 

  24. Longley W, McIntosh TJ. A bicontinuous tetrahedral structure in a liquid-crystalline lipid. Nature. 1983;303:612–4.

    Article  Google Scholar 

  25. Hyde ST, Anderson S, Ericsson B, Larsson K. A cubic structure consisting of a lipid bilayer forming an infinite periodic minimum surface of the gyroid type in the glyceryl monooleate-water system. Z Kristallogr. 1984;168:213–9.

    Article  Google Scholar 

  26. Boyd BJ. Characterisation of drug release from cubosomes using the pressure ultrafiltration method. Int J Pharm. 2003;260(2):239–47.

    Article  PubMed  Google Scholar 

  27. Freeman HC, Hutchinson ND. The crystal structure of the anti-tumor agent 5-(3, 3-dimethyl-1-triazenyl)imidazole-4-carboxamide (NSC-45388). Acta Cryst B. 1979;35:2051.

    Article  Google Scholar 

  28. Yaghmur A, Laggner P, Almgren M, Rappolt M. Self-assembly in monoelaidin aqueous dispersions: direct vesicles to cubosomes transition. PLoS ONE. 2008;3(11):e3747.

    Article  PubMed  Google Scholar 

  29. Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, et al. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res. 2005;22(12):2163–73.

    Article  PubMed  Google Scholar 

  30. Liu TY, Hu SH, Liu KH, Shaiu RS, Liu DM, Chen SY. Instantaneous drug delivery of magnetic/thermally sensitive nanospheres by a high-frequency magnetic field. Langmuir. 2008;24(23):13306–11.

    Article  PubMed  Google Scholar 

  31. Landh T. Phase behavior in the system pine oil monoglycerides-poloxamer 407-water at 20 C. J Phys Chem. 1994;98:8453–67.

    Article  Google Scholar 

  32. Israelachvili JN. Intermolecular and surface forces. London, UK: Academic; 1991.

    Google Scholar 

  33. Anderson DM, Gruner SM, Leibler S. Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals. Proc Natl Acad Sci USA. 1988;85(15):5364–8.

    Article  PubMed  Google Scholar 

  34. Siekmann B, Bunjes H, Koch MH, Westesen K. Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride-water phases. Int J Pharm. 2002;244(1–2):33–43.

    Article  PubMed  Google Scholar 

  35. Worle G, Drechsler M, Koch MH, Siekmann B, Westesen K, Bunjes H. Influence of composition and preparation parameters on the properties of aqueous monoolein dispersions. Int J Pharm. 2007;329(1–2):150–7.

    Article  PubMed  Google Scholar 

  36. Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir. 1997;13:6964–71.

    Article  Google Scholar 

  37. Hui SW, Stewart TP, Boni LT, Yeagle PL. Membrane fusion through point defects in bilayers. Science (New York, NY). 1981;212(4497):921–3.

    Google Scholar 

  38. Amar-Yuli I, Wachtel E, Shoshan EB, Danino D, Aserin A, Garti N. Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer. Langmuir. 2007;23(7):3637–45.

    Article  PubMed  Google Scholar 

  39. Koegler WS, Patrick C, Cima MJ, Griffith LG. Carbon dioxide extraction of residual chloroform from biodegradable polymers. J Biomed Mater Res. 2002;63(5):567–76.

    Article  PubMed  Google Scholar 

  40. Mumper RJ, Jay M. Poly(L-lactic acid) microspheres containing neutron-activatable holmium-165: a study of the physical characteristics of microspheres before and after irradiation in a nuclear reactor. Pharm Res. 1992;9(1):149–54.

    Article  PubMed  Google Scholar 

  41. B'Hymer C. Residual solvent testing: a review of gas-chromatographic and alternative techniques. Pharm Res. 2003;20(3):337–44.

    Article  PubMed  Google Scholar 

  42. Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release. 2005;102(2):313–32.

    Article  PubMed  Google Scholar 

  43. Zielhuis SW, Nijsen JF, Dorland L, Krijger GC, van Het Schip AD, Hennink WE. Removal of chloroform from biodegradable therapeutic microspheres by radiolysis. Int J Pharm. 2006;315(1–2):67–74.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Monoolein (GMO) was kindly provided to us by Danisco Cultor (Grindsted, Denmark). We also appreciated the guidance of Dr. Elizabeth Kostoryz (Division of Pharmacology, University of Missouri–Kansas City) for the DLS experiment and the support of Randy Tindall (Electron Microscopy Center, University of Missouri–Columbia) for the electron microscopy. The author acknowledge the helpful and thorough proof reading of this manuscript by Margaret LoGiudice, R.D.H, M.S. (Johnson County Community College, Overland Park, KS)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-Botti C. Youan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bei, D., Zhang, T., Murowchick, J.B. et al. Formulation of Dacarbazine-loaded Cubosomes. Part III. Physicochemical Characterization. AAPS PharmSciTech 11, 1243–1249 (2010). https://doi.org/10.1208/s12249-010-9496-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9496-7

Key words

Navigation