Skip to main content
Log in

Human Fetal Liver Metabolism of Oxycodone Is Mediated by CYP3A7

  • Research Article
  • Theme: Celebrating Women in the Pharmaceutical Sciences
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Oxycodone is an opioid analgesic that is commonly prescribed to pregnant women to treat moderate-to-severe pain. It has been shown to cross the placenta and distribute to the fetus. Oxycodone is mainly metabolized by CYP3A4 in the adult liver. Since CYP3A7 is abundantly expressed in the fetal liver and has overlapping substrate specificity with CYP3A4, we hypothesized that the fetal liver may significantly limit fetal exposure to oxycodone. This study showed that oxycodone is metabolized by CYP3A7 to noroxycodone in fetal liver microsomes (FLMs). The measured CYP3A7 expression was 191–409 pmol/mg protein in 14 FLMs, and an intersystem extrapolation factor (ISEF) for CYP3A7 was 0.016–0.066 in the panel of fetal livers using 6β-OH-testosterone formation as the probe reaction. Noroxycodone formation in the fetal liver was predicted from formation rate by recombinant CYP3A7, CYP3A7 expression level and the established ISEF value with average fold error of 1.25. Based on the intrinsic clearance of oxycodone measured in FLM, the fetal hepatic clearance (CLh) at term was predicted to be 495 (range: 66.4–936) μL/min, a value that is > 99% lower than the predicted adult liver CLh. The predicted fetal hepatic extraction ratio was 0.0019 (range: 0.00003–0.0036). These results suggest that fetal liver metabolism does not quantitatively contribute to the total systemic clearance of oxycodone in pregnant women nor does it provide a barrier for limiting fetal exposure to oxycodone. Additionally, since CYP3A7 forms noroxycodone, an inactive metabolite, the metabolism in the fetal liver is unlikely to affect fetal opioid activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Patrick SW, Dudley J, Martin PR, Harrell FE, Warren MD, Hartmann KE, et al. Prescription opioid epidemic and infant outcomes. Pediatrics. 2015;135(5):842–50.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Martins F, Oppolzer D, Santos C, Barroso M. Opioid use in pregnant women and neonatal abstinence syndrome — a review of the literature 2019;1–17.

  3. Desai Rishi J, Hernandez-Diaz Sonia, Bateman, Brain T., Huybrechts KF. Increase in prescription opioid use during pregnancy among Medicaid-enrolled women 2014;123(5):997–1002.

  4. Yazdy MM, Desai RJ, Brogly SB. Prescription opioids in pregnancy and birth outcomes: a review of the literature. J Pediatr Genet. 2015;4(2):56–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bunikowski R, Grimmer I, Heiser A, Metze B, Schäfer A, Obladen M. Neurodevelopmental outcome after prenatal exposure to opiates. Eur J Pediatr. 1998;157(9):724–30.

    Article  CAS  PubMed  Google Scholar 

  6. Patrick SW, Schumacher RE, Benneyworth BD, Krans EE, McAllister JM, Davis MM. Neonatal abstinence syndrome and associated health care expenditures: United States, 2000-2009. JAMA - J Am Med Assoc. 2012;307(18):1934–40.

    Article  CAS  Google Scholar 

  7. Conradt E, Flannery T, Aschner JL, Annett RD, Croen LA, Duarte CS, et al. Prenatal opioid exposure: neurodevelopmental consequences and future research priorities. Pediatrics. 2019;144(3).

  8. Jones HE, Jansson LM, Grady KEO, Kaltenbach K. Neurotoxicology and teratology the relationship between maternal methadone dose at delivery and neonatal outcome: methodological and design considerations. Neurotoxicol Teratol. 2013;39:110–5.

    Article  CAS  PubMed  Google Scholar 

  9. Jones HE, Dengler E, Garrison A, Grady KEO, Seashore C, Horton E, et al. Neonatal outcomes and their relationship to maternal buprenorphine dose during pregnancy. Drug Alcohol Depend. 2014;134:414–7.

    Article  CAS  PubMed  Google Scholar 

  10. Liao MZ, Gao C, Shireman LM, Phillips B, Risler LJ, Neradugomma NK, et al. P-gp/ABCB1 exerts differential impacts on brain and fetal exposure to norbuprenorphine. Pharmacol Res. 2017;119:61–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pacifici GM, Säwe J, Kager L, Rane A. Morphine glucuronidation in human fetal and adult liver. Eur J Clin Pharmacol. 1982;22(6):553–8.

    Article  CAS  PubMed  Google Scholar 

  12. Ladona M, Lindstrom B, Thyr C, Dun-Ren P, Rane A. Differential foetal development of the O- and N-demethylation of codeine and dextromethorphan in man. Br J Clin Pharmacol. 1991;32(3):295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Treluyer J-M, Jacqz-Aigrain E, Alvarez F, Cresteil T. Expression of CYP2D6 in developing human liver. Eur J Biochem. 1991;202(2):583–8.

    Article  CAS  PubMed  Google Scholar 

  14. Garland M, Abildskov KM, Kiu TW, Daniel SS, Stark RI. The contribution of fetal metabolism to the disposition of morphine. Drug Metab Dispos. 2005;33(1):68–76.

    Article  CAS  PubMed  Google Scholar 

  15. Epstein RA, Bobo W V., Martin PR, Morrow JA, Wang W, Chandrasekhar R, et al. Incrasing pregnancy-related use of prescribed opioid analgesics 2013;23(8):498–503.

  16. Kokki M, Franco MG, Raatikainen K, Välitalo P, Sankilampi U, Heinonen S, et al. Intravenous oxycodone for pain relief in the first stage of labour - maternal pharmacokinetics and neonatal exposure. Basic Clin Pharmacol Toxicol. 2012;111(3):182–8.

    CAS  PubMed  Google Scholar 

  17. Kinnunen M, Kokki H, Hautajärvi H, Tuovinen K, Kokki M. Oxycodone for pain management in the latent phase of labour – a pragmatic trial. Acta Anaesthesiol Scand. 2020;64(5):685–90.

    Article  CAS  PubMed  Google Scholar 

  18. Lalovic B, Phillips B, Risler LL, Howald W, Shen DD. Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. 2004;32(4):447–54.

  19. Lalovic B, Kharasch E, Hoffer C, Risler L, Liu-Chen LY, Shen DD. Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther. 2006;79(5):461–79.

    Article  CAS  PubMed  Google Scholar 

  20. Leeder JS, Gaedigk R, Marcucci KA, Gaedigk A, Vyhlidal CA, Schindel BP, et al. Variability of CYP3A7 expression in human fetal. Liver. 2005;314(2):626–35.

    CAS  Google Scholar 

  21. Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, et al. Developmental expression of the major human hepatic CYP3A enzymes. 2003;307(2):573–82.

  22. Stevens JC. New perspectives on the impact of cytochrome P450 3A expression for pediatric pharmacology. 2006;11(May).

  23. Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30(8):883–91.

    Article  CAS  PubMed  Google Scholar 

  24. Klees TM, Sheffels P, Dale O, Kharasch ED. Metabolism of alfentanil by CYP3A enzymes. Drug Metab Dispos. 2005;33(3):303–11.

    Article  CAS  PubMed  Google Scholar 

  25. Pearce RE, Vakkalagadda GR, Steven LJ. Pathways of carbamazepine bioactivation in vitro I. Characterization of human cytochromes P450 responsible for the formation of 2- and 3-hydroxylated metabolites. Drug Metab Dispos. 2002;30(11):1170–9.

    Article  CAS  PubMed  Google Scholar 

  26. Topletz AR, Zhong G, Isoherranen N. Scaling in vitro activity of CYP3A7 suggests human fetal livers do not clear retinoic acid entering from maternal circulation. Sci Rep. 2019;9(4620):1–11.

    CAS  Google Scholar 

  27. Godamudunage MP, Grech AM, Scott EE. Comparison of antifungal azole interactions with adult cytochrome P450 3A4 versus neonatal cytochrome P450 3A7. Drug Metab Dispos. 2018;46(9):1329–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shuster DL, Risler LJ, Prasad B, Calamia JC, Voellinger JL, Kelly EJ, et al. Identification of CYP3A7 for glyburide metabolism in human fetal livers. Biochem Pharmacol. 2014;92(4):690–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peng CC, Templeton I, Thummel KE, Davis C, Kunze KL, Isoherranen N. Evaluation of 6Β-hydroxycortisol, 6β-hydroxycortisone, and a combination of the two as endogenous probes for inhibition of CYP3A4 in vivo. Clin Pharmacol Ther. 2011;89(6):888–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Z, Imperial MZ, Patilea-Vrana GI, Wedagedera J, Gaohua L, Unadkat JD. Development of a novel maternal-fetal physiologically based pharmacokinetic model I: insights into factors that determine fetal drug exposure through simulations and sensitivity analyses. Drug Metab Dispos. 2017;45(8):920–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilkinson GR, Shand DG. A physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18(4):377–90.

    Article  CAS  PubMed  Google Scholar 

  32. Leow KP, Wright AWE, Cramond T, Smith MT. Determination of the serum protein binding of oxycodone and morphine using ultrafiltration. Ther Drug Monit. 1993;15(5):440–7.

    Article  CAS  PubMed  Google Scholar 

  33. Chen Y, Liu L, Nguyen K, Fretland AJ. Utility of intersystem extrapolation factors in early reaction phenotyping and the quantitative extrapolation of human liver microsomal intrinsic clearance using recombinant cytochromes P450. Drug Metab Dispos. 2011;39(3):373–82.

    Article  CAS  PubMed  Google Scholar 

  34. Proctor NJ, Tucker GT, Rostami-Hodjegan A. Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica. 2004;34(2):151–78.

    Article  CAS  PubMed  Google Scholar 

  35. Hakkola J, Pasanen M, Purkunen R, Saarikoski S, Pelkonen O, Mäenpää J, et al. Expression of xenobiotic-metabolizing cytochrome P450 forms in human adult and fetal liver. Biochem Pharmacol. 1994;48(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  36. Kandel SE, Han LW, Mao Q, Lampe JN. Digging deeper into CYP3A testosterone metabolism: kinetic, regioselectivity, and stereoselectivity differences between CYP3A4/5 and CYP3A7. Drug Metab Dispos. 2017;45(12):1266–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rane A, Sjoqvist F. Drug metabolism in hte human fetus and newborn infant. Nippon rinsho Japanese J Clin Med. 1972;19(1):37–49.

    CAS  Google Scholar 

  38. Dutton GJ. Glucuronide synthesis in foetal liver and other tissues. Biochem J. 1959;71(1):141–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ring JA, Ghabrial H, Ching MS, Smallwood RA, Morgan DJ. Fetal hepatic drug elimination. Pharmacol Ther. 1999;84(3):429–45.

    Article  CAS  PubMed  Google Scholar 

  40. Kiserud T. Fetal venous circulation - an update on hemodynamics. J Perinat Med. 2000;28(2):90–6.

    Article  CAS  PubMed  Google Scholar 

  41. Hines RN. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther. 2008;118(2):250–67.

    Article  CAS  PubMed  Google Scholar 

  42. Ekström L, Johansson M, Rane A. Tissue distribution and relative gene expression of udp-glucuronosyltransferases (2B7, 2B15, 2B17) in the human fetus. Drug Metab Dispos. 2013;41(2):291–5.

    Article  PubMed  Google Scholar 

  43. Huang W, Lin YS, McConn DJ, Calamia JC, Totah RA, Isoherranen N, et al. Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos. 2004;32(12):1434–45.

    Article  CAS  PubMed  Google Scholar 

  44. Arnold SL, Stevison F, Isoherranen N. Impact of sample matrix on accuracy of peptide quantification: assessment of calibrator and internal standard selection and method validation. Anal Chem. 2016;88(1):746–53.

    Article  CAS  PubMed  Google Scholar 

  45. Ladona MG, Spalding DJM, Ekman L, Lindström B, Rane A. Human fetal and adult liver metabolism of ethylmorphine. Biochem Pharmacol. 1989;38(19):3147–55.

    Article  CAS  PubMed  Google Scholar 

  46. Bonnardot JP, Maillet M, Colau JC, Millot F, Deligne P. Maternal and fetal concentration of morphine after intrathecal administration during labour. Br J Anaesth. 1982;54(5):487–9.

    Article  CAS  PubMed  Google Scholar 

  47. Gerdin E, Lindberg B, Salmonson T, Rane A. Maternal kinetics of morphine during labour. J Perinat Med. 1990;18(6):479–87.

    Article  CAS  PubMed  Google Scholar 

  48. Fleet JA, Belan I, Gordon AL, Cyna AM. Fentanyl concentration in maternal and umbilical cord plasma following intranasal or subcutaneous administration in labour. Int J Obstet Anesth. 2020;42:34–8.

    Article  PubMed  Google Scholar 

  49. De Barros DL, Dantas Moisés EC, Carvalho Cavalli R, Lanchote VL, Duarte G, Pereira Da Cunha S. Distribution of fentanyl in the placental intervillous space and in the different maternal and fetal compartments in term pregnant women. Eur J Clin Pharmacol. 2009;65(8):803–8.

    Article  Google Scholar 

  50. Gepts E, Heytens L, Camu F. Pharmacokinetics and placental transfer of intravenous and epidural alfentanil in parturient women. Anesth Analg. 1986;65(11):1155–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The CYP3A7 protein was a gift from the Emily Scott laboratory, generated by Jinghan Liu and funded under NIH grant R01AI150494. This work was supported by the NIH NCATS training grant TL1 TR002318, an NIH grant P01 DA032507, and the Elmer M. Plein Endowed Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Isoherranen.

Additional information

Guest Editors: Diane Burgess, Marilyn Morris and Meena Subramanyam

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shum, S., Isoherranen, N. Human Fetal Liver Metabolism of Oxycodone Is Mediated by CYP3A7. AAPS J 23, 24 (2021). https://doi.org/10.1208/s12248-020-00537-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-00537-x

KEY WORDS

Navigation