Skip to main content

Advertisement

Log in

HIV-1 Sanctuary Sites—the Role of Membrane-Associated Drug Transporters and Drug Metabolic Enzymes

  • Review Article
  • Theme: Celebrating Women in the Pharmaceutical Sciences
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Despite significant advances in the treatment of human immunodeficiency virus-1 (HIV) infection with highly active antiretroviral drug therapy, the persistence of the virus in cellular and anatomic reservoirs is a major obstacle preventing total HIV eradication. Viral persistence could result from a variety of contributing factors including, but not limited to, non-adherence to treatment and adverse drug reactions, latently infected cells carrying replication-competent virus, drug–drug interactions, and inadequate antiretroviral drug (ARV) concentrations reached in several anatomic sites such as the brain, testis, and gut-associated lymphoid tissues. The distribution of ARVs at specific sites of infection is primarily dependent on drug physicochemical properties and drug plasma protein binding, as well as drug efflux, influx, and metabolic processes. A thorough understanding of the functional roles of drug transporters and metabolic enzymes in the disposition of ARVs in immune cell types and tissues that are characterized as HIV reservoirs and sanctuaries is critical to overcome the challenge of suboptimal drug distribution at sites of persistent HIV infection. This review summarizes the current knowledge related to the expression and function of drug transporters and metabolic enzymes in HIV cellular and anatomic reservoirs, and their potential contribution to drug–drug interactions and insufficient drug concentration at these sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. UNAIDS. Fact sheet: global HIV statistics [Internet]. 2020. Available from: https://www.unaids.org/en/resources/fact-sheet. Accessed 25 July 2020.

  2. Al-Dakkak I, Patel S, McCann E, Gadkari A, Prajapati G, Maiese EM. The impact of specific HIV treatment-related adverse events on adherence to antiretroviral therapy: a systematic review and meta-analysis. AIDS Care - Psychol Socio-Medical Asp AIDS/HIV. 2013;25(4):400–14.

    Google Scholar 

  3. Bangsberg DR, Acosta EP, Gupta R, Guzman D, Riley ED, Harrigan PR, et al. Adherence–resistance relationships for protease and non-nucleoside reverse transcriptase inhibitors explained by virological fitnes. AIDS. 2006;20(2):223–31.

    CAS  PubMed  Google Scholar 

  4. Prakash O, Pankey G. HIV eradication: progress and challenges. Ochsner J. 2001;3(2):98–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Eyre RC, Zheng G, Kiessling AA. Multiple drug resistance mutations in human immunodeficiency virus in semen but not blood of a man on antiretroviral therapy. Urology. 2000;55(4):591.

    CAS  PubMed  Google Scholar 

  6. Smit TK, Brew BJ, Tourtellotte W, Morgello S, Gelman BB, Saksena NK. Independent evolution of human immunodeficiency virus (HIV) drug resistance mutations in diverse areas of the brain in HIV-infected patients, with and without dementia, on antiretroviral treatment. J Virol. 2004;78(18):10133–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Taylor S, Back D, Workman J, Drake SM, White D, Choudhury B, et al. Poor penetration of the male genital tract by HIV-1 protease inhibitors. AIDS. 1999;13:859–72.

    CAS  PubMed  Google Scholar 

  8. Esparza J. A brief history of the global effort to develop a preventive HIV vaccine. Vaccine. 2013;31(35):3502–18.

    PubMed  Google Scholar 

  9. Martin AR, Siliciano RF. Progress toward HIV eradication: case reports, current efforts, and the challenges associated with cure. Annu Rev Med. 2016;67:215–28.

    CAS  PubMed  Google Scholar 

  10. Dahl V, Josefsson L, Palmer S. HIV reservoirs, latency, and reactivation: prospects for eradication. Antivir Res. 2010;85(1):286–94.

    CAS  PubMed  Google Scholar 

  11. Fletcher CV, Staskus K, Wietgrefe SW, Rothenberger M, Reilly C, Chipman JG, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A. 2014;111(6):2307–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. DHHS Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in adults and adolescents living with HIV. [Internet]. Department of Health and Human Services. 2019. Available from: https://files.aidsinfo.nih.gov/contentfiles/lvguidelines/AdultandAdolescentGL.pdf. Accessed 01 June 2020.

  13. Warnke D, Barreto J, Temesgen Z. Antiretroviral drugs. J Clin Pharmacol. 2007;47(12):1570–9.

    CAS  PubMed  Google Scholar 

  14. Kulpa DA, Chomont N. HIV persistence in the setting of antiretroviral therapy: when, where and how does HIV hide? J Virus Erad. 2015;1(2):59–66.

    PubMed  PubMed Central  Google Scholar 

  15. Saksena NK, Wang B, Zhou L, Soedjono M, Shwen Ho Y, Conceicao V. HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. HIV/AIDS - Res Palliat Care. 2010;2:103–22.

    CAS  Google Scholar 

  16. Barat C, Proust A, Deshiere A, Leboeuf M, Drouin J, Tremblay MJ. Astrocytes sustain long-term productive HIV-1 infection without establishment of reactivable viral latency. Glia. 2018;66:1363–81.

    PubMed  Google Scholar 

  17. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15(8):893–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. De Maria A, Pantaleo G, Schnittman SM, Greenwood J, Baseler M, Orenstein JM, et al. Infection of CD8+ T lymphocytes with HIV. Requirement for interaction with infected CD4+ cells and induction of infectious virus from chronically infected CD8+ cells. J Immunol. 1991;146(7):2220–6.

    PubMed  Google Scholar 

  19. Cheney K, Kumar R, Purins A, Mundy L, Ferguson W, SHaw D, et al. HIV type 1 persistence in CD4¯/CD8¯ double negative T cells from patients on antiretroviral therapy. AIDS Res Hum Retrovir. 2006;22(1):66–75.

    CAS  PubMed  Google Scholar 

  20. Gray LR, Roche M, Flynn JK, Wesselingh SL, Gorry PR, Churchill MJ. Is the central nervous system a reservoir of HIV-1? Curr Opin HIV AIDS. 2014;9(6):552–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chun TW, Nickle D, Justement SJ, Meyers J, Roby G, Hallahan CW, et al. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis. 2008;197(5):714–20.

    CAS  PubMed  Google Scholar 

  22. Huang Y, Hoque M, Jenabian M, Vyboh K, Whyte S, Sheehan N, et al. Antiretroviral drug transporters and metabolic enzymes in human testicular tissue – potential contribution to HIV-1 sanctuary site. J Antimicrob Chemother. 2016;71(7):1954–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Shacklett BL, Greenblatt RM. Immune responses to HIV in the female reproductive tract, immunologic parallels with the gastrointestinal tract, and research implications. Am J Reprod Immunol. 2011;65(3):230–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jenabian M, Costiniuk CT, Mehraj V, Ancuta P, Bendayan R, Brassard P, et al. Immune tolerance properties of the testicular tissue as a viral sanctuary site in ART-treated HIV-infected adults. AIDS. 2016;30:2777–86.

    CAS  PubMed  Google Scholar 

  25. Robillard KR, Hoque T, Bendayan R. Expression of ATP-binding cassette membrane transporters in rodent and human sertoli cells: relevance to the permeability of antiretroviral therapy at the blood-testis barrier. J Pharmacol Exp Ther. 2012;340(1):96–108.

    CAS  PubMed  Google Scholar 

  26. Whyte-Allman S-K, Hoque MT, Jenabian M-A, Routy J-P, Bendayan R. Xenobiotic nuclear receptors PXR and CAR regulate antiretroviral drug efflux transporters at the blood-testis barrier. J Pharmacol Exp Ther. 2017;363(3):324–35.

    CAS  PubMed  Google Scholar 

  27. Ronaldson PT, Lee G, Dallas S, Bendayan R. Involvement of P-glycoprotein in the transport of saquinavir and indinavir in rat brain microvessel endothelial and microglia cell lines. Pharm Res. 2004;21(5):811–8.

    CAS  PubMed  Google Scholar 

  28. Best BM, Letendre SL, Brigid E, Clifford DB, Collier AC, Gelman BB, et al. Low atazanavir concentrations in cerebrospinal fluid. AIDS. 2010;23(1):83–7.

    Google Scholar 

  29. Yukl S, Gianella S, Sinclair E, Epling L, Li Q, ALM C, et al. Differences in HIV burden and immune activation within the gut of HIV+ patients on suppressive antiretroviral therapy. 2011;202(10):1553–61.

  30. Letendre S, Marquie-beck J, Capparelli E, Best B, Clifford D, Collier AC, et al. Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol. 2009;65(1):65–70.

    Google Scholar 

  31. Gray LR, Tachedjian G, Ellett AM, Roche MJ, Cheng WJ, Guillemin GJ, et al. The NRTIs lamivudine, stavudine and zidovudine have reduced HIV-1 inhibitory activity in astrocytes. PLoS One. 2013;8(4).

  32. Asahchop EL, Meziane O, Mamik MK, Chan WF, Branton WG, Resch L, et al. Reduced antiretroviral drug efficacy and concentration in HIV-infected microglia contributes to viral persistence in brain. Retrovirology. 2017;14(1):1–17.

    Google Scholar 

  33. Lorenzo-Redondo R, Fryer HR, Bedford T, Kim EY, Archer J, Kosakovsky Pond SL, et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature. 2016;530(7588):51–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Estes JD, Kityo C, Ssali F, Swainson L, Makamdop KN, Del Prete GQ, et al. Defining total-body AIDS-virus burden with implications for curative strategies. Nat Med. 2017;23(11):1271–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Le Tortorec A, Dejucq-Rainsford N. HIV infection of the male genital tract - consequences for sexual transmission and reproduction. Int J Androl. 2010;33(1):98–108.

    Google Scholar 

  36. Ponte R, Dupuy FP, Brimo F, Mehraj V, Brassard P, Belanger M, et al. Characterization of myeloid cell populations in human testes collected after sex reassignment surgery. J Reprod Immunol. 2018;125:16–24.

    CAS  PubMed  Google Scholar 

  37. Osborne BJW, Sheth PM, Yi TJ, Kovacs C, Benko E, La Porte C, et al. Impact of antiretroviral therapy duration and intensification on isolated shedding of HIV-1 RNA in semen. J Infect Dis. 2013;207(8):1226–34.

    CAS  PubMed  Google Scholar 

  38. Miller RL, Ponte R, Jones BR, Kinloch NN, Omondi FH, Jenabian M-A, et al. HIV diversity and genetic compartmentalization in blood and testes during suppressive antiretroviral therapy. J Virol. 2019;93(17):1–20.

    Google Scholar 

  39. Else LJ, Taylor S, Back DJ, Khoo SH. Pharmacokinetics of antiretroviral drugs in anatomical sanctuary sites : the male and female genital tract. Antivir Ther. 2011;1167:1149–67.

    Google Scholar 

  40. Shen R, Richter HE, Smith PD. Early HIV-1 target cells in human vaginal and ectocervical mucosa. Am J Reprod Immunol. 2011;65(3):261–7.

    PubMed  Google Scholar 

  41. Kwara A, DeLong A, Rezk N, Hogan J, Burtwell H, Chapman S, et al. Antiretroviral drug concentrations and HIV RNA in the genital tract of HIV-infected women receiving long-term highly active antiretroviral therapy. Clin Infect Dis. 2008;46(5):719–25.

    CAS  PubMed  Google Scholar 

  42. Dumond JB, Yeh RF, Patterson KB, Corbett AH, Hwa Jung B, Rezk NL, et al. Antiretroviral drug exposure in the female genital tract: implications for oral pre-and post-exposure prophylaxis. Aids. 2007;21(14):1899–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kovacs A, Wasserman SS, Burns D, Wright DJ, Cohn J, Landay A, et al. Determinants of HIV-1 shedding in the genital tract of women. Lancet. 2001;358(9293):1593–601.

    CAS  PubMed  Google Scholar 

  44. Matsson P, Doak BC, Over B, Kihlberg J. Cell permeability beyond the rule of 5. Adv Drug Deliv Rev. 2016;101:42–61.

    CAS  PubMed  Google Scholar 

  45. Glynn SL, Yazdanian M. In vitro blood-brain barrier permeability of nevirapine compared to other HIV antiretroviral agents. J Pharm Sci. 1998;87(3):306–10.

    CAS  PubMed  Google Scholar 

  46. Ford J, Khoo S, Back D. The intracellular pharmacology of antiretroviral protease inhibitors. J Antimicrob Chemother. 2004;54(6):982–90.

    CAS  PubMed  Google Scholar 

  47. Nwogu JN, Ma Q, Babalola CP, Adedeji WA, Morse GD, Taiwo B. Pharmacokinetic, pharmacogenetic, and other factors influencing CNS penetration of antiretrovirals. AIDS Res Treat. 2016;16:1–13.

    Google Scholar 

  48. Kashuba ADM, Dyer JR, Kramer LM, Raasch RH, Eron JJ, Cohen MS. Antiretroviral-drug concentrations in semen: implications for sexual transmission of human immunodeficiency virus type 1. Antimicrob Agents Chemother. 1999;43(8):1817–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Boffito M, Back DJ, Blaschke TF, Rowland M, Bertz RJ, Gerber JG, et al. Protein binding in antiretroviral therapies. AIDS Res Hum Retrovir. 2003;19(9):825–35.

    CAS  PubMed  Google Scholar 

  50. Bilello JA, Drusano GL. Relevance of plasma protein binding to antiviral activity and clinical efficacy of inhibitors of human immunodeficiency virus protease [with reply]. J Infect Dis. 1996;173(6):1524–6.

    CAS  PubMed  Google Scholar 

  51. Enting RH, Hoetelmans RM, Lange JM, Burger DM, Beijnen JH, Portegies P. Antiretroviral drugs and the central nervous system. AIDS. 1998;12:1941–55.

  52. Best BM, Letendre SL, Koopmans P, Rossi SS, Clifford DB, Collier AC, et al. Low cerebrospinal fluid concentrations of the nucleotide HIV reverse transcriptase inhibitor, tenofovir. J Acquir Immune Defic Syndr. 2012;59(4):376–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Calcagno A, Di Perri G, Bonora S. Pharmacokinetics and pharmacodynamics of antiretrovirals in the central nervous system. Clin Pharmacokinet. 2014;53(10):891–906.

    CAS  PubMed  Google Scholar 

  54. Alam C, Whyte-Allman S-K, Omeragic A, Bendayan R. Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev. 2016;103:121–43.

    CAS  PubMed  Google Scholar 

  55. Kis O, Robillard K, Chan GNY, Bendayan R. The complexities of antiretroviral drug-drug interactions: role of ABC and SLC transporters. Trends Pharmacol Sci. 2010;31(1):22–35.

    CAS  PubMed  Google Scholar 

  56. Kumar GN, Surapaneni S. Role of drug metabolism in drug discovery and development. Med Res Rev. 2001;21(5):397–411.

    CAS  PubMed  Google Scholar 

  57. Wang X, Nitanda T, Shi M, Okamoto M, Furukawa T, Sugimoto Y, et al. Breast cancer resistance protein (BCRP/ ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Mol Pharmacol. 2003;63:65–72.

    CAS  PubMed  Google Scholar 

  58. Reese MJ, Savina PM, Generaux GT, Tracey H, Humphreys JE, Kanaoka E, et al. In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor. Drug Metab Dispos. 2013;41(2):353–61.

    CAS  PubMed  Google Scholar 

  59. Hoque MT, Kis O, De Rosa MF, Bendayan R. Raltegravir permeability across blood-tissue barriers and the potential role of drug efflux transporters. Antimicrob Agents Chemother. 2015;59(5):2572–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ray AS, Cihlar T, Robinson KL, Tong L, Vela JE, Fuller MD, et al. Mechanism of active renal tubular efflux of tenofovir. Antimicrob Agents Chemother. 2006;50(10):3297–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dutheil F, Dauchy S, Diry M, Sazdovitch V, Cloarec O, Mellottée L, et al. Xenobiotic-metabolizing enzymes and transporters in the normal human brain: regional and cellular mapping as a basis for putative roles in cerebral function. Drug Metab Dispos. 2009;37(7):1528–38.

    CAS  PubMed  Google Scholar 

  62. Cottrell ML, Hadzic T, Kashuba ADM. Clinical pharmacokinetic, pharmacodynamic and drug-interaction profile of the integrase inhibitor dolutegravir. Clin Pharmacokinet. 2013;52(11):981–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cory TJ, He H, Winchester LC, Kumar S, Fletcher CV. Alterations in p-glycoprotein expression and function between macrophage subsets. Pharm Res. 2016;33:2713–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dussault I, Lin M, Hollister K, Wang EH, Synold TW, Forman BM. Peptide mimetic HIV protease inhibitors are ligands for the orphan receptor SXR. J Biol Chem. 2001;276(36):33309–12.

    CAS  PubMed  Google Scholar 

  65. Chan GNY, Patel R, Cummins CL, Bendayan R. Induction of P-glycoprotein by antiretroviral drugs in human brain microvessel endothelial cells. Antimicrob Agents Chemother. 2013 Sep;57(9):4481–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gupta S, Gollapudi S. P-glycoprotein (MDR 1 gene product) in cells of the immune system: its possible physiologic role and alteration in aging and human immunodeficiency virus-1 (HIV-1) infection. J Clin Immunol. 1993;13(5):289–301.

    CAS  PubMed  Google Scholar 

  67. Liu SN, Lu JBL, Watson CJW, Lazarus P, Desta Z, Gufford BT. Mechanistic assessment of extrahepatic contributions to glucuronidation of integrase strand transfer inhibitors. Drug Metab Dispos. 2019;47(5):535–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Midde NM, Rahman MA, Rathi C, Li J, Meibohm B, Li W, et al. Effect of ethanol on the metabolic characteristics of HIV-1 integrase inhibitor elvitegravir and elvitegravir/cobicistat with CYP3A: an analysis using a newly developed LC-MS/MS method. PLoS One. 2016;11(2):1–19.

    Google Scholar 

  69. Weiss J, Theile D, Ketabi-Kiyanvash N, Lindenmaier H, Haefeli WE. Inhibition of MRP1/ABCC1, MRP2/ABCC2, and MRP3/ABCC3 by nucleoside, nucleotide, and non-nucleoside reverse transcriptase inhibitors. Drug Metab Dispos. 2007;35(3):340–4.

    CAS  PubMed  Google Scholar 

  70. Weiss J, Weiss N, Ketabi-Kiyanvash N, Storch CH, Haefeli WE. Comparison of the induction of P-glycoprotein activity by nucleotide, nucleoside, and non-nucleoside reverse transcriptase inhibitors. Eur J Pharmacol. 2008;579:104–9.

    CAS  PubMed  Google Scholar 

  71. Reid G, Wielinga P, Zelcer N, De Haas M, Van Deemter L, Wijnholds J, et al. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol. 2003;63(5):1094–103.

    CAS  PubMed  Google Scholar 

  72. Weiss J, Rose J, Storch CH, Ketabi-Kiyanvash N, Sauer A, Haefeli WE, et al. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother. 2007;59(2):238–45.

    CAS  PubMed  Google Scholar 

  73. Begley R, Das M, Zhong L, Ling J, Kearney BP, Custodio JM. Pharmacokinetics of tenofovir alafenamide when coadministered itwh other HIV antiretrovirals. JAIDS J Acquir Immune Defic Syndr. 2018;78(4):465–72.

    CAS  PubMed  Google Scholar 

  74. Storch CH, Theile D, Lindenmaier H, Haefeli WE, Weiss J. Comparison of the inhibitory activity of anti- HIV drugs on P-glycoprotein. Biochem Pharmacol. 2007;42:1269–74.

    Google Scholar 

  75. Van Gelder J, Deferme S, Naesens L, De Clercq E, Van Den Mooter G, Kinget R, et al. Intestinal absorption enhancement of the ester prodrug tenofovir disoproxil fumarate through modulation of the biochemical barrier by defined ester mixtures. Drug Metab Dispos. 2002;30(8):924–30.

    PubMed  Google Scholar 

  76. Bleasby K, Fillgrove KL, Houle R, Lu B, Palamanda J, Newton DJ, et al. In vitro evaluation of the drug interaction potential of doravirine. Antimicrob Agents Chemother. 2019;63(4):1–12.

    Google Scholar 

  77. Ward BA, Gorski JC, Jones DR, Hall SD, Flockhart DA, Desta Z. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther. 2003;306(1):287–300.

    CAS  PubMed  Google Scholar 

  78. Moss DM, Liptrott NJ, Curley P, Siccardi M, Back DJ, Owen A. Rilpivirine inhibits drug transporters ABCB1, SLC22A1, and SLC22A2 in vitro. Antimicrob Agents Chemother. 2013;57(11):5612–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Brown KC, Paul S, Kashuba ADM. Drug interactions with new and investigational antiretrovirals. Clin Pharmacokinet. 2009;48(4):211–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Weiss J, Haefeli WE. Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int J Antimicrob Agents. 2013;41(5):484–7.

    CAS  PubMed  Google Scholar 

  81. Committee for Medicinal Products for Human Use. CHMP assessment report: Edurant [Internet]. European Medicines Agency. 2011. p. 1–89. Available from: https://www.ema.europa.eu/en/documents/assessment-report/edurant-epar-public-assessment-report_en.pdf. Accessed 30 July 2020.

  82. Gupta A, Zhang Y, Unadkat J, Mao Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol. 2004;310(1):334–41.

    CAS  Google Scholar 

  83. Perloff MD, von Moltke LL, Greenblatt DJ. Fexofenadine transport in Caco-2 cells: inhibition with verapamil and ritonavir. J Clin Pharmacol. 2002;42:1269–74.

    CAS  PubMed  Google Scholar 

  84. Dixit V, Hariparsad N, Li F, Desai P, Thummel KE, Unadkat JD. Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions. Pharmacology. 2007;35(10):1853–9.

    CAS  Google Scholar 

  85. Hossain MA, Tran T, Chen T, Mikus G, Greenblatt DJ. Inhibition of human cytochromes P450 in vitro by ritonavir and cobicistat. J Pharm Pharmacol. 2017;69(12):1786–93.

    CAS  PubMed  Google Scholar 

  86. Bierman WFW, Scheffer GL, Schoonderwoerd A, Jansen G, van Agtmael MA, Danner SA, et al. Protease inhibitors atazanavir, lopinavir and ritonavir are potent blockers, but poor substrates, of ABC transporters in a broad panel of ABC transporter-overexpressing cell lines. J Antimicrob Chemother. 2010;65(8):1672–80.

    CAS  PubMed  Google Scholar 

  87. Koudriakova T, Iatsimirskaia E, Utkin I, Gangl E, Vouros P, Storozhuk E, et al. Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab Dispos. 1998;26(6):552–61.

    CAS  PubMed  Google Scholar 

  88. Zhang D, Chando TJ, Everett DW, Patten CJ, Dehal SS, Griffith HW. In vitro inhibition of udp glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation. Drug Metab Dispos. 2005;33(11):1729–39.

    CAS  PubMed  Google Scholar 

  89. Tseng E, Walsky RL, Luzietti RA, Harris JJ, Kosa RE, Goosen TC, et al. Relative contributions of cytochrome CYP3A4 versus CYP3A5 for CYP3A-cleared drugs assessed in vitro using a CYP3A4-selective inactivator (CYP3cide). Drug Metab Dispos. 2014;42(7):1163–73.

    PubMed  Google Scholar 

  90. Zastre JA, GNY C, Ronaldson PT, Ramaswamy M, Couraud PO, Romero IA, et al. Up-regulation of p-glycoprotein by HIV protease inhibitors in a human brain microvessel endothelial cell line. J Neurosci Res. 2009;87(4):1023–36.

    CAS  PubMed  Google Scholar 

  91. Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165(5):1260–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Annaert P, Ye ZW, Stieger B, Augustijns P. Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica. 2010;40(3):163–76.

    CAS  PubMed  Google Scholar 

  93. Kis O, Zastre JA, Hoque MT, Walmsley SL, Bendayan R. Role of drug efflux and uptake transporters in atazanavir intestinal permeability and drug-drug interactions. Pharm Res. 2013;30(4):1050–64.

    CAS  PubMed  Google Scholar 

  94. Kis O, Walmsley SL, Bendayan R. In vitro and in situ evaluation of pH-dependence of atazanavir intestinal permeability and interactions with acid-reducing agents. Pharm Res. 2014;3(2):1–16.

    Google Scholar 

  95. Kis O, Zastre JA, Ramaswamy M, Bendayan R. pH dependence of organic anion-transporting polypeptide 2B1 in caco-2 cells : potential role in antiretroviral drug oral bioavailability and drug – drug interactions. J Pharmacol Exp Ther. 2010;334(3):1009–22.

    CAS  PubMed  Google Scholar 

  96. Liang Y, Li S, Chen L. The physiological role of drug transporters. Protein Cell. 2015;6(5):334–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Huisman MT, Smit JW, Crommentuyn KML, Zelcer N, Wiltshire HR, Beijnen JH, et al. Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS. 2002;16(17):2295–301.

    CAS  PubMed  Google Scholar 

  98. Janneh O, Jones E, Chandler B, Owen A, Khoo SH. Inhibition of P-glycoprotein and multidrug resistance-associated proteins modulates the intracellular concentration of lopinavir in cultured CD4 T cells and primary human lymphocytes. J Antimicrob Chemother. 2007;60(5):987–93.

    CAS  PubMed  Google Scholar 

  99. Ronaldson PT, Persidsky Y, Bendayan R. Regulation of ABC membrane transporters in glial cells: relevance to the pharmacotherapy of brain HIV-1 infection. Glia. 2008;56(16):1711–35.

    PubMed  Google Scholar 

  100. Lee G, Schlichter L, Bendayan M, Bendayan R. Functional expression of P-glycoprotein in rat brain microglia. J Pharmacol Exp Ther. 2001;299(1):204–12.

    CAS  PubMed  Google Scholar 

  101. Bendayan R, Ronaldson PT, Gingras D, Bendayan M. In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J Histochem Cytochem. 2006;54(10):1159–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dallas S, Schlichter L, Bendayan R. Multidrug resistance protein (MRP) 4-and MRP 5-mediated efflux of 9-(2-phosphonylmethoxyethyl) adenine by microglia. J Pharmacol Exp Ther. 2004;309(3):1221–9.

    CAS  PubMed  Google Scholar 

  103. Dallas S, Zhu X, Baruchel S, Schlichter L, Bendayan R. Functional expression of the multidrug resistance protein 1 in microglia. Pharmacology. 2003;307(1):282–90.

    CAS  Google Scholar 

  104. Nies AT, Jedlitschky G, König J, Herold-Mende C, Steiner HH, Schmitt HP, et al. Expression and immunolocalization of the multidrug resistance proteins, MRP1–MRP6 (ABCC1–ABCC6), in human brain. Neuroscience. 2004;129(2):349–60.

    CAS  PubMed  Google Scholar 

  105. Declèves X, Fajac A, Lehmann-Che J, Tardy M, Mercier C, Hurbain I, et al. Molecular and functional MDR1-PGP and MRPS expression in human glioblastoma multiforme cell lines. Int J Cancer. 2002;98(2):173–80.

    PubMed  Google Scholar 

  106. Gibson CJ, Hossain MM, Richardson JR, Aleksunes LM. Inflammatory regulation of ATP binding cassette efflux transporter expression and function in microglia. J Pharmacol Exp Ther. 2012;343(3):650–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lee G, Babakhanian K, Ramaswamy M, Prat A, Wosik K, Bendayan R. Expression of the ATP-binding cassette membrane transporter, ABCG2, in human and rodent brain microvessel endothelial and glial cell culture systems. Pharm Res. 2007;24(7):1262–74.

    CAS  PubMed  Google Scholar 

  108. Hayashi K, Pu H, Andras IE, Eum SY, Yamauchi A, Hennig B, et al. HIV-TAT protein upregulates expression of multidrug resistance protein 1 in the blood–brain barrier. J Cereb Blood Flow Metab [Internet]. 2006;26(8):1052–65. Available from: http://www.nature.com/doifinder/10.1038/sj.jcbfm.9600254. Accessed 12 Dec 2019.

  109. Hayashi K, Pu H, Tian J, Andras IE, Lee YW, Hennig B, et al. HIV-Tat protein induces P-glycoprotein expression in brain microvascular endothelial cells. J Neurochem. 2005;93(5):1231–41.

    CAS  PubMed  Google Scholar 

  110. Ashraf T, Ronaldson P, Persidsky Y, Bendayan R. Regulation of p-glycoprotein by human immunodeficiency virus-1 in primary cultures of human fetal astrocytes. J Neurosci Res. 2011;89(11):1773–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ronaldson PT, Bendayan R. HIV-1 viral envelope glycoprotein gp120 triggers an inflammatory response in cultured rat astrocytes and regulates the functional expression of P-glycoprotein. Mol Pharmacol. 2006;70(3):1087–98.

    CAS  PubMed  Google Scholar 

  112. Ronaldson PT, Bendayan R. HIV-1 viral envelope glycoprotein gp120 produces oxidative stress and regulates the functional expression of multidrug resistance protein-1 (Mrp1) in glial cells. J Neurochem. 2008;106(3):1298–313.

    CAS  PubMed  Google Scholar 

  113. Mukhopadhya I, Murray GI, Duncan L, Yuecel R, Shattock R, Kelly C, et al. Transporters for antiretroviral drugs in colorectal CD4+ T cells and circulating α4β7 integrin CD4+ T cells: implications for HIV microbicides. Mol Pharm. 2016;13(9):3334–40.

    CAS  PubMed  Google Scholar 

  114. De Rosa MF, Robillard KR, Kim CJ, Hoque MT, Kandel G, Kovacs C, et al. Expression of membrane drug efflux transporters in the sigmoid colon of HIV-infected and uninfected men. J Clin Pharmacol. 2013;53(9):934–45.

    PubMed  Google Scholar 

  115. Kis O, Sankaran-Walters S, Walmsley SL, Dandekar S, Bendayan R. HIV-1 alters intestinal expression of drug transporters and metabolic enzymes : implications for antiretroviral drug disposition. Antimicrob Agents Chemother. 2016;60:2771–81.

  116. Whyte-Allman S-K, Hoque MT, Gilmore J, Kaul R, Routy J-P, Bendayan R. Drug efflux transporters and metabolic enzymes in human circulating and testicular T-cell subsets: relevance to HIV pharmacotherapy. AIDS. 2020;34(10):1439–49.

  117. Melaine N, Liénard M-O, Dorval I, Le Goascogne C, Lejeune H, Jégou B. Multidrug resistance genes and p-glycoprotein in the testis of the rat, mouse, Guinea pig, and human. Biol Reprod. 2002;67(6):1699–707.

    CAS  PubMed  Google Scholar 

  118. Klein DM, Wright SH, Cherrington NJ. Localization of multidrug resistance-associated proteins along the blood-testis barrier in rat, macaque, and human testis. Drug Metab Dispos. 2014;42(1):89–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Hijazi K, Cuppone AM, Smith K, Stincarelli MA, Ekeruche J, De FG, et al. Expression of genes for drug transporters in the human female genital tract and modulatory effect of antiretroviral drugs. PLoS One. 2015;10(6):1–18.

    Google Scholar 

  120. Zhou T, Hu M, Cost M, Poloyac S, Rohan L. Expression of transporters and metabolizing enzymes in the female lower genital tract: implications for microbicide research. AIDS Res Hum Retrovir. 2013;29(11):1496–503.

    CAS  PubMed  Google Scholar 

  121. Hijazi K, Iannelli F, Cuppone AM, Desjardins D, Caldwell A, Dereuddre-Bosquet N, et al. In vivo modulation of cervicovaginal drug transporters and tissue distribution by film-released tenofovir and darunavir for topical prevention of HIV-1. Mol Pharm. 2020;17(3):852–64.

    CAS  PubMed  Google Scholar 

  122. Minuesa G, Arimany-nardi C, Erkizia I, Ceden S, Martinez-picado J. P-glycoprotein (ABCB1) activity decreases raltegravir disposition in primary CD4 1 P-gp high cells and correlates with HIV-1 viral load. J Antimicrob Chemother. 2016;71(10):1–11.

    Google Scholar 

  123. Zhang J-C, Deng Z-Y, Wang Y, Xie F, Sun L, Zhang F-X. Expression of breast cancer resistance protein in peripheral T cell subsets from HIV-1-infected patients with antiretroviral therapy. Mol Med Rep. 2014;10(2):939–46.

    CAS  PubMed  Google Scholar 

  124. Moon YJ, Zhang S, Morris ME. Real-time quantitative polymerase chain reaction for BCRP, MDR1, and MRP1 mRNA levels in lymphocytes and monocytes. Acta Haematol. 2007;118(3):169–75.

    CAS  PubMed  Google Scholar 

  125. van de Ven R, Lindenberg JJ, Reurs AW, Scheper RJ, Scheffer GL, de Gruijl TD. Preferential Langerhans cell differentiation from CD34 + precursors upon introduction of ABCG2 (BCRP). Immunol Cell Biol. 2012;90(2):206–15.

    PubMed  Google Scholar 

  126. Walubo A. The role of cytochrome P450 in antiretroviral drug interactions. Expert Opin Drug Metab Toxicol. 2007;3(4):583–98.

    CAS  PubMed  Google Scholar 

  127. Laupèze B, Amiot L, Bertho N, Grosset J, Lehne G, Fauchet R, et al. Differential expression of the efflux pumps p-glycoprotein and multidrug resistance-associated protein in human monocyte-derived dendritic cells. Hum Immunol. 2001;62(10):1073–80.

    PubMed  Google Scholar 

  128. van de Ven R, Scheffer GL, Scheper RJ, de Gruijl TD. The ABC of dendritic cell development and function. Trends Immunol. 2009;30(9):421–9.

    PubMed  Google Scholar 

  129. Andrade CH, de Freitas LM, de Oliveira V. Twenty-six years of HIV science: an overview of anti-HIV drugs metabolism. Brazilian J Pharm Sci. 2011;47(2):209–30.

    CAS  Google Scholar 

  130. Zembruski NCL, Büchel G, Jödicke L, Herzog M, Haefeli WE, Weiss J. Potential of novel antiretrovirals to modulate expression and function of drug transporters in vitro. J Antimicrob Chemother. 2011;66(4):802–12.

    CAS  PubMed  Google Scholar 

  131. Mackenzie PI, Owens I, Burchell B, Bock KW, Bairoch A, Belanger A, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics. 1997;7:255–69.

    CAS  PubMed  Google Scholar 

  132. Tseng A, Hughes CA, Wu J, Seet J, Hons B, Medmicro G, et al. Cobicistat versus ritonavir : similar pharmacokinetic enhancers but some important differences. Ann Pharmacother. 2017;51(11):1008–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Liptrott NJ, Khoo SH, Back DJ, Owen A. Detection of ABCC2, CYP2B6 and CYP3A4 in human peripheral blood mononuclear cells using flow cytometry. Phys Lett. 2008;339(2):270–4.

    CAS  Google Scholar 

  134. Jin M, Arya P, Patel K, Singh B, Silverstein P, Bhat H, et al. Effect of alcohol on drug efflux protein and drug metabolic enzymes in U937 macrophages. Alcohol Clin Exp Res. 2011;35(1):132–9.

    CAS  PubMed  Google Scholar 

  135. Ouzzine M, Gulberti S, Ramalanjaona N, Magdalou J. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. Front Cell Neurosci. 2014;8(349):1–12.

    Google Scholar 

  136. He H, Buckley M, Britton B, Mu Y, Warner K, Kumar S, et al. Polarized macrophage subsets differentially express the drug efflux transporters MRP1 and BCRP, resulting in altered HIV production. Antivir Chem Chemother. 2018;26:1–7.

    Google Scholar 

  137. Jorajuria S, Dereuddre-Bosquet N, Becher F, Martin S, Porcheray F, Garrigues A, et al. ATP binding cassette multidrug transporters limit the anti-HIV activity of zidovudine and indinavir in infected human macrophages. Antivir Ther. 2004;9(4):519–28.

    CAS  PubMed  Google Scholar 

  138. Temesgen Z, Siraj DS. Raltegravir: first in class HIV integrase inhibitor. Ther Clin Risk Manag. 2008;4(2):493–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Hill L, Smith SR, Karris MY. Profile of bictegravir / emtricitabine / tenofovir alafenamide fixed dose combination and its potential in the treatment of HIV-1 infection: evidence to date. HIV/AIDS - Res Palliat Care. 2018;10:203–13.

    CAS  Google Scholar 

  140. Bélanger AS, Caron P, Harvey M, Zimmerman PA, Mehlotra RK, Guillemette C. Glucuronidation of the antiretroviral drug efavirenz by UGT2B7 and an in vitro investigation of drug-drug interaction with zidovudine. Drug Metab Dispos. 2009;37(9):1793–6.

    PubMed  PubMed Central  Google Scholar 

  141. Togna RA, Antonilli L, Dovizio M, Salemme A, De Carolis L, Togna GI, et al. In vitro morphine metabolism by rat microglia. Neuropharmacology. 2013;75:391–8.

    CAS  PubMed  Google Scholar 

  142. Robinson-Rechavi M, Garcia HE, Laudet V. The nuclear receptor superfamily. J Cell Sci. 2003;116(4):585–6.

    PubMed  Google Scholar 

  143. Wang H, LeCluyse EL. Role of orphan nuclear receptors in the regulation of drug-metabolising enzymes. Clin Pharmacokinet. 2003;42(15):1331–57.

    CAS  PubMed  Google Scholar 

  144. Urquhart BL, Tirona RG, Kim RB. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol. 2007;47(5):566–78.

    CAS  PubMed  Google Scholar 

  145. Svärd J, Spiers JP, Mulcahy F, Hennessy M. Nuclear receptor-mediated induction of CYP450 by antiretrovirals: functional consequences of NR1I2 (PXR) polymorphisms and differential prevalence in whites and sub-Saharan Africans. JAIDS J Acquir Immune Defic Syndr. 2010;55(5):536–49.

    PubMed  Google Scholar 

  146. Ashraf T, Jiang W, Hoque MT, Henderson J, Wu C, Bendayan R. Role of anti-inflammatory compounds in human immunodeficiency virus-1 glycoprotein120-mediated brain inflammation. J Neuroinflammation. 2014;11(1):1–14.

    Google Scholar 

  147. Ronaldson PT, Ashraf T, Bendayan R. Regulation of multidrug resistance protein 1 by tumor necrosis factor alpha in cultured glial cells: involvement of nuclear factor-kappaB and c-Jun N-terminal kinase signaling pathways. Mol Pharmacol. 2010;77(4):644–59.

    CAS  PubMed  Google Scholar 

  148. Zhou Y, Zhang K, Yin X, Nie Q, Ma Y. HIV-1 tat protein enhances expression and function of breast cancer resistance protein. AIDS Res Hum Retrovir. 2016;32(1):1–3.

    PubMed  Google Scholar 

  149. Turriziani O, Gianotti N, Falasca F, Boni A, Vestri AR, Zoccoli A, et al. Expression levels of MDR1 , MRP1 , MRP4 , and MRP5 in peripheral blood mononuclear cells from HIV infected patients failing antiretroviral therapy. J Med Virol. 2008;771:766–71.

    Google Scholar 

Download references

Acknowledgments

This work is supported by an operating grant from the Canadian Institutes of Health Research (MOP-56976) and a University of Toronto, Leslie Dan Faculty of Pharmacy Internal Grant 202079 awarded to Dr. Reina Bendayan. Dr. Bendayan is a career scientist of the Ontario HIV Treatment Network (OHTN), Ministry of Health of Ontario. Ms. Sana-Kay Whyte-Allman is the recipient of the University of Toronto Connaught International Doctoral Scholarship.

Contribution by Authors as Women Scientists

Sana-Kay Whyte-Allman

Sana-Kay Whyte-Allman is a PhD student at the Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, where she is supervised by Dr. Reina Bendayan. Sana-Kay conducts research to investigate the role and regulation of membrane-associated drug transport proteins and drug metabolic enzymes in HIV antiretroviral drug disposition, and their potential contribution to persistent HIV infection. Her work has resulted in several first authorship and co-authored publications, international and national conference presentations, and travel scholarships. Sana-Kay is also a recipient of the prestigious University of Toronto Connaught International Doctoral Scholarship for the duration of her PhD studies. As an international student from Jamaica, Sana-Kay represents a first-generation college/university student from a minority group, and an accomplished young researcher with a strong desire to make significant contributions to the pharmaceutical science field.

Reina Bendayan

Dr. Reina Bendayan is a professor of the Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, and career scientist of the Ontario HIV Treatment Network, Ministry of Health of Ontario. Dr. Bendayan’s research program is primarily focused on Membrane Transport and Therapeutics with an emphasis in the field of HIV/AIDS Antiviral Drug Transport and Regulation at sanctuary sites and cellular reservoirs of HIV. Her research program is primarily funded by the Canadian Institutes of Health Research, Ministry of Health of Ontario, and the Natural Sciences and Engineering Research Council of Canada. She is the author of over 100 peer-reviewed manuscripts, and over the course of her academic career, she has supervised many undergraduate research students, master’s students, doctoral students, and post-doctoral research fellows. Dr. Bendayan understands the immense value of welcoming diversity into her laboratory and over the past years has put significant efforts in ensuring an inclusive research environment in her laboratory including men, women, and individuals from under-represented groups. Dr. Bendayan was elected Fellow of the AAPS (2010) and the Canadian Society of Pharmaceutical Sciences (CSPS, 2015), and received the Association of Faculties of Pharmacy of Canada Research Career Award (2013) and the CSPS Research Leadership Award (2019). She served as Graduate Chair and Associate Dean Graduate Education of the Graduate Department of Pharmaceutical Sciences (July 2005–July 2011) and as Acting Dean of the Leslie Dan Faculty of Pharmacy (January 2007–July 2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reina Bendayan.

Additional information

Guest Editors: Diane Burgess, Marilyn Morris and Meena Subramanyam

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whyte-Allman, SK., Bendayan, R. HIV-1 Sanctuary Sites—the Role of Membrane-Associated Drug Transporters and Drug Metabolic Enzymes. AAPS J 22, 118 (2020). https://doi.org/10.1208/s12248-020-00498-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-00498-1

KEY WORDS

Navigation