Skip to main content

Advertisement

Log in

Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics

  • Review Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The recent progress in harnessing the efficient and precise method of DNA editing provided by CRISPR/Cas9 is one of the most promising major advances in the field of gene therapy. However, the development of safe and optimally efficient delivery systems for CRISPR/Cas9 elements capable of achieving specific targeting of gene therapy to the location of interest without off-target effects is a primary challenge for clinical therapeutics. Nanoparticles (NPs) provide a promising means to meet such challenges. In this review, we present the most recent advances in developing innovative NP-based delivery systems that efficiently deliver CRISPR/Cas9 constructs and maximize their effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017;266:17–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565–75.

    CAS  PubMed  Google Scholar 

  4. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12.

    CAS  PubMed  Google Scholar 

  5. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167–70.

    CAS  PubMed  Google Scholar 

  6. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–82.

    CAS  PubMed  Google Scholar 

  7. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. elife. 2013;2:e00471.

    PubMed  PubMed Central  Google Scholar 

  9. Stephens CJ, Kashentseva E, Everett W, Kaliberova L, Curiel DT. Targeted in vivo knock-in of human alpha-1-antitrypsin cDNA using adenoviral delivery of CRISPR/Cas9. Gene Ther. 2018.

  10. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014;346(6213):1258096.

    PubMed  Google Scholar 

  11. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang H, La Russa M, Qi LS. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem. 2016;85:227–64.

    CAS  PubMed  Google Scholar 

  13. Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials. 2018;171:207–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing. Nat Rev Drug Discov. 2017;16(6):387–99.

    CAS  PubMed  Google Scholar 

  15. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9(6):467–77.

    CAS  PubMed  Google Scholar 

  16. Cyranoski D. First trial of CRISPR in people. Nature. 2016;535(7613):476–7.

    CAS  PubMed  Google Scholar 

  17. Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z, et al. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials. 2009;30(2):226–32.

    PubMed  Google Scholar 

  18. Aldayel AM, Naguib YW, O'Mary HL, Li X, Niu M, Ruwona TB, et al. Acid-sensitive sheddable PEGylated PLGA nanoparticles increase the delivery of TNF-alpha siRNA in chronic inflammation sites. Mol Ther Nucleic Acids. 2016;5(7):e340.

    PubMed  PubMed Central  Google Scholar 

  19. Naguib YW, Cui Z. Nanomedicine: the promise and challenges in cancer chemotherapy. Adv Exp Med Biol. 2014;811:207–33.

    CAS  PubMed  Google Scholar 

  20. Rajasekaran D, Srivastava J, Ebeid K, Gredler R, Akiel M, Jariwala N, et al. Combination of nanoparticle-delivered siRNA for astrocyte elevated gene-1 (AEG-1) and all-trans retinoic acid (ATRA): an effective therapeutic strategy for hepatocellular carcinoma (HCC). Bioconjug Chem. 2015;26(8):1651–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Givens BE, Geary SM, Salem AK. Nanoparticle-based CpG-oligonucleotide therapy for treating allergic asthma. Immunotherapy. 2018.

  22. Ebeid K, Meng X, Thiel KW, Do AV, Geary SM, Morris AS, et al. Synthetically lethal nanoparticles for treatment of endometrial cancer. Nat Nanotechnol. 2018;13(1):72–81.

    CAS  PubMed  Google Scholar 

  23. Wongrakpanich A, Morris AS, Geary SM, Joiner MA, Salem AK. Surface-modified particles loaded with CaMKII inhibitor protect cardiac cells against mitochondrial injury. Int J Pharm. 2017;520(1–2):275–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Morris AS, Sebag SC, Paschke JD, Wongrakpanich A, Ebeid K, Anderson ME, et al. Cationic CaMKII inhibiting nanoparticles prevent allergic asthma. Mol Pharm. 2017;14(6):2166–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Joshi VB, Adamcakova-Dodd A, Jing X, Wongrakpanich A, Gibson-Corley KN, Thorne PS, et al. Development of a poly (lactic-co-glycolic acid) particle vaccine to protect against house dust mite induced allergy. AAPS J. 2014;16(5):975–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine delivery systems: size matters. AAPS J. 2013;15(1):85–94.

    CAS  PubMed  Google Scholar 

  27. Salem AK, Searson PC, Leong KW. Multifunctional nanorods for gene delivery. Nat Mater. 2003;2(10):668–71.

    CAS  PubMed  Google Scholar 

  28. Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chem Rev. 2017;117(15):9874–906.

    CAS  PubMed  Google Scholar 

  29. Wang HX, Song Z, Lao YH, Xu X, Gong J, Cheng D, et al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc Natl Acad Sci U S A. 2018.

  30. Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech. 2014;15(6):1527–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Glass Z, Lee M, Li Y, Xu Q. Engineering the delivery system for CRISPR-based genome editing. Trends Biotechnol. 2018;36(2):173–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lostale-Seijo I, Louzao I, Juanes M, Montenegro J. Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene edition. Chem Sci. 2017;8(12):7923–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mekler V, Minakhin L, Semenova E, Kuznedelov K, Severinov K. Kinetics of the CRISPR-Cas9 effector complex assembly and the role of 3′-terminal segment of guide RNA. Nucleic Acids Res. 2016;44(6):2837–45.

    PubMed  PubMed Central  Google Scholar 

  34. DiCarlo JE, Deeconda A, Tsang SH. Viral vectors, engineered cells and the CRISPR revolution. Adv Exp Med Biol. 2017;1016:3–27.

    PubMed  Google Scholar 

  35. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hess GT, Tycko J, Yao D, Bassik MC. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol Cell. 2017;68(1):26–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang M, Glass ZA, Xu Q. Non-viral delivery of genome-editing nucleases for gene therapy. Gene Ther. 2017;24(3):144–50.

    CAS  PubMed  Google Scholar 

  38. Ha JS, Lee JS, Jeong J, Kim H, Byun J, Kim SA, et al. Poly-sgRNA/siRNA ribonucleoprotein nanoparticles for targeted gene disruption. J Control Release. 2017;250:27–35.

    CAS  PubMed  Google Scholar 

  39. Mout R, Ray M, Lee YW, Scaletti F, Rotello VM. In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges. Bioconjug Chem. 2017;28(4):880–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Khalil IA, Kogure K, Futaki S, Hama S, Akita H, Ueno M, et al. Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene Ther. 2007;14(8):682–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev. 2013;65(1):121–38.

    CAS  PubMed  Google Scholar 

  42. Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005;7(5):657–63.

    CAS  PubMed  Google Scholar 

  43. Vercauteren D, Rejman J, Martens TF, Demeester J, De Smedt SC, Braeckmans K. On the cellular processing of non-viral nanomedicines for nucleic acid delivery: mechanisms and methods. J Control Release. 2012;161(2):566–81.

    CAS  PubMed  Google Scholar 

  44. Sonawane ND, Szoka FC, Jr., Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 2003;278(45):44826–44831.

    CAS  Google Scholar 

  45. Richard I, Thibault M, De Crescenzo G, Buschmann MD, Lavertu M. Ionization behavior of chitosan and chitosan-DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Biomacromolecules. 2013;14(6):1732–40.

    CAS  PubMed  Google Scholar 

  46. Cardarelli F, Pozzi D, Bifone A, Marchini C, Caracciolo G. Cholesterol-dependent macropinocytosis and endosomal escape control the transfection efficiency of lipoplexes in CHO living cells. Mol Pharm. 2012;9(2):334–40.

    CAS  PubMed  Google Scholar 

  47. Kalderon D, Roberts BL, Richardson WD, Smith AE. A short amino acid sequence able to specify nuclear location. Cell. 1984;39(3 Pt 2):499–509.

    CAS  PubMed  Google Scholar 

  48. Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH. Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem. 2007;282(8):5101–5.

    CAS  PubMed  Google Scholar 

  49. Sun Y, Xian L, Xing H, Yu J, Yang Z, Yang T, et al. Factors influencing the nuclear targeting ability of nuclear localization signals. J Drug Target. 2016;24(10):927–33.

    CAS  PubMed  Google Scholar 

  50. Hu Q, Wang J, Shen J, Liu M, Jin X, Tang G, et al. Intracellular pathways and nuclear localization signal peptide-mediated gene transfection by cationic polymeric nanovectors. Biomaterials. 2012;33(4):1135–45.

    CAS  PubMed  Google Scholar 

  51. Lee J, Jung J, Kim YJ, Lee E, Choi JS. Gene delivery of PAMAM dendrimer conjugated with the nuclear localization signal peptide originated from fibroblast growth factor 3. Int J Pharm. 2014;459(1–2):10–8.

    CAS  PubMed  Google Scholar 

  52. Park E, Cho HB, Takimoto K. Effective gene delivery into adipose-derived stem cells: transfection of cells in suspension with the use of a nuclear localization signal peptide-conjugated polyethylenimine. Cytotherapy. 2015;17(5):536–42.

    CAS  PubMed  Google Scholar 

  53. Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc. 2012;134(13):5722–5.

    CAS  PubMed  Google Scholar 

  54. Malhotra M, Tomaro-Duchesneau C, Prakash S. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials. 2013;34(4):1270–80.

    CAS  PubMed  Google Scholar 

  55. Nitin N, LaConte L, Rhee WJ, Bao G. Tat peptide is capable of importing large nanoparticles across nuclear membrane in digitonin permeabilized cells. Ann Biomed Eng. 2009;37(10):2018–27.

    PubMed  PubMed Central  Google Scholar 

  56. Ammosova T, Jerebtsova M, Beullens M, Lesage B, Jackson A, Kashanchi F, et al. Nuclear targeting of protein phosphatase-1 by HIV-1 Tat protein. J Biol Chem. 2005;280(43):36364–71.

    CAS  PubMed  Google Scholar 

  57. Sandgren S, Cheng F, Belting M. Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide. Role for cell-surface proteoglycans. J Biol Chem. 2002;277(41):38877–83.

    CAS  PubMed  Google Scholar 

  58. Liu BY, He XY, Xu C, Xu L, Ai SL, Cheng SX, et al. A dual-targeting delivery system for effective genome editing and in situ detecting related protein expression in edited cells. Biomacromolecules. 2018.

  59. Asai T, Tsuzuku T, Takahashi S, Okamoto A, Dewa T, Nango M, et al. Cell-penetrating peptide-conjugated lipid nanoparticles for siRNA delivery. Biochem Biophys Res Commun 2014;444(4):599–604.

    CAS  PubMed  Google Scholar 

  60. Nelson CE, Gersbach CA. Engineering delivery vehicles for genome editing. Annu Rev Chem Biomol Eng. 2016;7:637–62.

    CAS  PubMed  Google Scholar 

  61. Cardarelli F, Digiacomo L, Marchini C, Amici A, Salomone F, Fiume G, et al. The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery. Sci Rep. 2016;6:25879.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu X, Liang X, Xie H, Kumar S, Ravinder N, Potter J, et al. Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX. Biotechnol Lett. 2016;38(6):919–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3:2510.

    PubMed  PubMed Central  Google Scholar 

  65. Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol. 2015;208:44–53.

    CAS  PubMed  Google Scholar 

  66. Daubendiek SL, Kool ET. Generation of catalytic RNAs by rolling transcription of synthetic DNA nanocircles. Nat Biotechnol. 1997;15(3):273–7.

    CAS  PubMed  Google Scholar 

  67. Daubendiek SL, Ryan K, Kool ET. Rolling-circle RNA synthesis: circular oligonucleotides as efficient substrates for T7 RNA polymerase. J Am Chem Soc. 1995;117(29):7818–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim H, Park Y, Lee JB. Self-assembled messenger RNA nanoparticles (mRNA-NPs) for efficient gene expression. Sci Rep. 2015;5:12737.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee JB, Hong J, Bonner DK, Poon Z, Hammond PT. Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat Mater. 2012;11(4):316–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sharma B, Crist RM, Adiseshaiah PP. Nanotechnology as a delivery tool for precision cancer therapies. AAPS J. 2017.

  71. del Pozo-Rodriguez A, Delgado D, Solinis MA, Pedraz JL, Echevarria E, Rodriguez JM, et al. Solid lipid nanoparticles as potential tools for gene therapy: in vivo protein expression after intravenous administration. Int J Pharm. 2010;385(1–2):157–62.

    PubMed  Google Scholar 

  72. Radaic A, de Paula E, de Jesus MB. Factorial design and development of solid lipid nanoparticles (SLN) for gene delivery. J Nanosci Nanotechnol. 2015;15(2):1793–800.

    CAS  PubMed  Google Scholar 

  73. Sune-Pou M, Prieto-Sanchez S, El Yousfi Y, Boyero-Corral S, Nardi-Ricart A, Nofrerias-Roig I, et al. Cholesteryl oleate-loaded cationic solid lipid nanoparticles as carriers for efficient gene-silencing therapy. Int J Nanomedicine. 2018;13:3223–33.

    PubMed  PubMed Central  Google Scholar 

  74. Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18(7):1357–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang P, Zhang L, Xie Y, Wang N, Tang R, Zheng W, et al. Genome editing for cancer therapy: delivery of Cas9 protein/sgRNA plasmid via a gold nanocluster/lipid core-shell nanocarrier. Advanced Science 2017.

  76. Zheng T, Bott S, Huo Q. Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation. ACS Appl Mater Interfaces. 2016;8(33):21585–94.

    CAS  PubMed  Google Scholar 

  77. Yin H, Song CQ, Suresh S, Wu Q, Walsh S, Rhym LH, et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol. 2017.

  78. Dong Y, Love KT, Dorkin JR, Sirirungruang S, Zhang Y, Chen D, et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Natl Acad Sci U S A. 2014;111(11):3955–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang M, Zuris JA, Meng F, Rees H, Sun S, Deng P, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A. 2016;113(11):2868–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Li Y, Yang T, Yu Y, Shi N, Yang L, Glass Z, et al. Combinatorial library of chalcogen-containing lipidoids for intracellular delivery of genome-editing proteins. Biomaterials 2018.

  81. Zhen S, Takahashi Y, Narita S, Yang YC, Li X. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome. Oncotarget. 2017;8(6):9375–87.

    PubMed  Google Scholar 

  82. Finn JD, Smith AR, Patel MC, Shaw L, Youniss MR, van Heteren J, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018;22(9):2227–35.

    CAS  PubMed  Google Scholar 

  83. Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew Chem Int Ed Engl. 2017;56(4):1059–63.

    CAS  PubMed  Google Scholar 

  84. Mout R, Ray M, Yesilbag Tonga G, Lee YW, Tay T, Sasaki K, et al. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano. 2017;11(3):2452–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Alsaiari SK, Patil S, Alyami M, Alamoudi KO, Aleisa FA, Merzaban JS, et al. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J Am Chem Soc. 2018;140(1):143–6.

    CAS  PubMed  Google Scholar 

  86. Yue H, Zhou X, Cheng M, Xing D. Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing. Nanoscale. 2018;10(3):1063–71.

    CAS  PubMed  Google Scholar 

  87. Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl. 2015;54(41):12029–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kretzmann JA, Ho D, Evans CW, Plani-Lam JHC, Garcia-Bloj B, Mohamed AE, et al. Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chem Sci. 2017;8(4):2923–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. 2008;26(5):561–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang M, Alberti K, Sun S, Arellano CL, Xu Q. Combinatorially designed lipid-like nanoparticles for intracellular delivery of cytotoxic protein for cancer therapy. Angew Chem Int Ed Engl. 2014;53(11):2893–8.

    CAS  PubMed  Google Scholar 

  91. Li B, Dong Y. Preparation and optimization of lipid-like nanoparticles for mRNA delivery. Methods Mol Biol. 1632;2017:207–17.

    Google Scholar 

  92. Li B, Luo X, Deng B, Giancola JB, McComb DW, Schmittgen TD, et al. Effects of local structural transformation of lipid-like compounds on delivery of messenger RNA. Sci Rep 2016;6:22137.

  93. Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W, Dorkin JR, et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci U S A. 2010;107(5):1864–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Whitehead KA, Dorkin JR, Vegas AJ, Chang PH, Veiseh O, Matthews J, et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat Commun. 2014;5:4277.

    CAS  PubMed  Google Scholar 

  95. Pombo Garcia K, Zarschler K, Barbaro L, Barreto JA, O'Malley W, Spiccia L, et al. Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small. 2014;10(13):2516–29.

    PubMed  Google Scholar 

  96. Panayiotou E, Papacharalambous R, Antoniou A, Christophides G, Papageorgiou L, Fella E, et al. Genetic background modifies amyloidosis in a mouse model of ATTR neuropathy. Biochem Biophys Rep. 2016;8:48–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Langer R, Folkman J. Polymers for the sustained release of proteins and other macromolecules. Nature. 1976;263(5580):797–800.

    CAS  PubMed  Google Scholar 

  98. Leelakanok N, Geary SM, Salem AK. Antitumor efficacy and toxicity of 5-fluorouracil-loaded poly(lactide co-glycolide) pellets. J Pharm Sci. 2018;107(2):690–7.

    CAS  PubMed  Google Scholar 

  99. Coleman MC, Goetz JE, Brouillette MJ, Seol D, Willey MC, Petersen EB, et al. Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis. Sci Transl Med. 2018;10(427).

    PubMed  PubMed Central  Google Scholar 

  100. Wafa EI, Geary SM, Goodman JT, Narasimhan B, Salem AK. The effect of polyanhydride chemistry in particle-based cancer vaccines on the magnitude of the anti-tumor immune response. Acta Biomater. 2017;50:417–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Khorsand B, Elangovan S, Hong L, Dewerth A, Kormann MS, Salem AK. A comparative study of the bone regenerative effect of chemically modified RNA encoding BMP-2 or BMP-9. AAPS J. 2017;19(2):438–46.

    CAS  PubMed  Google Scholar 

  102. Salem AK. Nanoparticles in vaccine delivery. AAPS J. 2015;17(2):289–91.

    PubMed  PubMed Central  Google Scholar 

  103. Makkouk A, Joshi VB, Wongrakpanich A, Lemke CD, Gross BP, Salem AK, et al. Biodegradable microparticles loaded with doxorubicin and CpG ODN for in situ immunization against cancer. AAPS J. 2015;17(1):184–93.

    CAS  PubMed  Google Scholar 

  104. Geary SM, Hu Q, Joshi VB, Bowden NB, Salem AK. Diaminosulfide based polymer microparticles as cancer vaccine delivery systems. J Control Release. 2015;220(Pt B):682–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wongrakpanich A, Adamcakova-Dodd A, Xie W, Joshi VB, Mapuskar KA, Geary SM, et al. The absence of CpG in plasmid DNA-chitosan polyplexes enhances transfection efficiencies and reduces inflammatory responses in murine lungs. Mol Pharm. 2014;11(3):1022–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Gross BP, Wongrakpanich A, Francis MB, Salem AK, Norian LA. A therapeutic microparticle-based tumor lysate vaccine reduces spontaneous metastases in murine breast cancer. AAPS J. 2014;16(6):1194–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Joshi VB, Geary SM, Carrillo-Conde BR, Narasimhan B, Salem AK. Characterizing the antitumor response in mice treated with antigen-loaded polyanhydride microparticles. Acta Biomater. 2013;9(3):5583–9.

    CAS  PubMed  Google Scholar 

  108. Hong L, Wei N, Joshi V, Yu Y, Kim N, Krishnamachari Y, et al. Effects of glucocorticoid receptor small interfering RNA delivered using poly lactic-co-glycolic acid microparticles on proliferation and differentiation capabilities of human mesenchymal stromal cells. Tissue Eng Part A. 2012;18(7–8):775–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery systems in cancer vaccines. Pharm Res. 2011;28(2):215–36.

    CAS  PubMed  Google Scholar 

  110. Intra J, Salem AK. Rational design, fabrication, characterization and in vitro testing of biodegradable microparticles that generate targeted and sustained transgene expression in HepG2 liver cells. J Drug Target. 2011;19(6):393–408.

    CAS  PubMed  Google Scholar 

  111. Intra J, Salem AK. Fabrication, characterization and in vitro evaluation of poly(D,L-lactide-co-glycolide) microparticles loaded with polyamidoamine-plasmid DNA dendriplexes for applications in nonviral gene delivery. J Pharm Sci. 2010;99(1):368–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang XQ, Intra J, Salem AK. Comparative study of poly (lactic-co-glycolic acid)-poly ethyleneimine-plasmid DNA microparticles prepared using double emulsion methods. J Microencapsul. 2008;25(1):1–12.

    PubMed  Google Scholar 

  113. Abbas AO, Donovan MD, Salem AK. Formulating poly(lactide-co-glycolide) particles for plasmid DNA delivery. J Pharm Sci. 2008;97(7):2448–61.

    CAS  PubMed  Google Scholar 

  114. Intra J, Salem AK. Characterization of the transgene expression generated by branched and linear polyethylenimine-plasmid DNA nanoparticles in vitro and after intraperitoneal injection in vivo. J Control Release. 2008;130(2):129–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang XQ, Intra J, Salem AK. Conjugation of polyamidoamine dendrimers on biodegradable microparticles for nonviral gene delivery. Bioconjug Chem. 2007;18(6):2068–76.

    CAS  PubMed  Google Scholar 

  116. Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wongrakpanich A, Wu M, Salem AK. Correlating intracellular nonviral polyplex localization with transfection efficiency using high-content screening. Biotechnol Prog. 2015;31(6):1685–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Atluri K, Seabold D, Hong L, Elangovan S, Salem AK. Nanoplex-mediated codelivery of fibroblast growth factor and bone morphogenetic protein genes promotes osteogenesis in human adipocyte-derived mesenchymal stem cells. Mol Pharm. 2015;12(8):3032–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ganas C, Weiss A, Nazarenus M, Rosler S, Kissel T, Rivera Gil P, et al. Biodegradable capsules as non-viral vectors for in vitro delivery of PEI/siRNA polyplexes for efficient gene silencing. J Control Release. 2014;196:132–8.

    CAS  PubMed  Google Scholar 

  120. Li L, He ZY, Wei XW, Gao GP, Wei YQ. Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Hum Gene Ther. 2015;26(7):452–62.

    CAS  PubMed  Google Scholar 

  121. Francis SM, Taylor CA, Tang T, Liu Z, Zheng Q, Dondero R, et al. SNS01-T modulation of eIF5A inhibits B-cell cancer progression and synergizes with bortezomib and lenalidomide. Mol Ther. 2014;22(9):1643–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Suenaga T, Kohyama M, Hirayasu K, Arase H. Engineering large viral DNA genomes using the CRISPR-Cas9 system. Microbiol Immunol. 2014;58(9):513–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–55.

    CAS  PubMed  Google Scholar 

  124. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4(7):581–93.

    CAS  PubMed  Google Scholar 

  125. Campeau P, Chapdelaine P, Seigneurin-Venin S, Massie B, Tremblay JP. Transfection of large plasmids in primary human myoblasts. Gene Ther. 2001;8(18):1387–94.

    CAS  PubMed  Google Scholar 

  126. Wang M, Liu H, Li L, Cheng Y. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat Commun. 2014;5:3053.

    PubMed  Google Scholar 

  127. Beerli RR, Segal DJ, Dreier B, Barbas CF 3rd. Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci U S A. 1998;95(25):14628–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Worthington KS, Green BJ, Rethwisch M, Wiley LA, Tucker BA, Guymon CA, et al. Neuronal differentiation of induced pluripotent stem cells on surfactant templated chitosan hydrogels. Biomacromolecules. 2016;17(5):1684–95.

    CAS  PubMed  Google Scholar 

  129. Mahiny AJ, Dewerth A, Mays LE, Alkhaled M, Mothes B, Malaeksefat E, et al. In vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency. Nat Biotechnol. 2015;33(6):584–6.

    CAS  PubMed  Google Scholar 

  130. Wilder MA. Surfactant protein B deficiency in infants with respiratory failure. J Perinat Neonat Nurs. 2004;18(1):61–7.

    Google Scholar 

  131. Liu Y, Wang T, He F, Liu Q, Zhang D, Xiang S, et al. An efficient calcium phosphate nanoparticle-based nonviral vector for gene delivery. Int J Nanomedicine. 2011;6:721–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ge X, Zhang Q, Cai Y, Duan S, Chen S, Lv N, et al. PEG-PCL-DEX polymersome-protamine vector as an efficient gene delivery system via PEG-guided self-assembly. Nanomedicine (Lond). 2014;9(8):1193–207.

    CAS  Google Scholar 

  133. Puras G, Martinez-Navarrete G, Mashal M, Zarate J, Agirre M, Ojeda E, et al. Protamine/DNA/Niosome ternary nonviral vectors for gene delivery to the retina: the role of protamine. Mol Pharm. 2015;12(10):3658–71.

    CAS  PubMed  Google Scholar 

  134. Yang W, Cheng Y, Xu T, Wang X, Wen LP. Targeting cancer cells with biotin-dendrimer conjugates. Eur J Med Chem. 2009;44(2):862–8.

    CAS  PubMed  Google Scholar 

  135. Vineberg JG, Zuniga ES, Kamath A, Chen YJ, Seitz JD, Ojima I. Design, synthesis, and biological evaluations of tumor-targeting dual-warhead conjugates for a taxoid-camptothecin combination chemotherapy. J Med Chem. 2014;57(13):5777–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Koutsioumpa M, Papadimitriou E. Cell surface nucleolin as a target for anti-cancer therapies. Recent Pat Anticancer Drug Discov. 2014;9(2):137–52.

    CAS  PubMed  Google Scholar 

  137. Sinclair JF, O'Brien AD. Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157:H7. J Biol Chem. 2002;277(4):2876–85.

    CAS  PubMed  Google Scholar 

  138. Zhou Y, Han C, Li D, Yu Z, Li F, Li F, et al. Cyclin-dependent kinase 11(p110) (CDK11(p110)) is crucial for human breast cancer cell proliferation and growth. Sci Rep. 2015;5:10433.

    PubMed  PubMed Central  Google Scholar 

  139. Liu X, Gao Y, Shen J, Yang W, Choy E, Mankin H, et al. Cyclin-dependent kinase 11 (CDK11) is required for ovarian cancer cell growth in vitro and in vivo, and its inhibition causes apoptosis and sensitizes cells to paclitaxel. Mol Cancer Ther. 2016;15(7):1691–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Feng Y, Sassi S, Shen JK, Yang X, Gao Y, Osaka E, et al. Targeting CDK11 in osteosarcoma cells using the CRISPR-Cas9 system. J Orthop Res. 2015;33(2):199–207.

    CAS  PubMed  Google Scholar 

  141. Hoyer J, Neundorf I. Peptide vectors for the nonviral delivery of nucleic acids. Acc Chem Res. 2012;45(7):1048–56.

    CAS  PubMed  Google Scholar 

  142. Guo Z, Peng H, Kang J, Sun D. Cell-penetrating peptides: possible transduction mechanisms and therapeutic applications. Biomed Rep. 2016;4(5):528–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Radis-Baptista G, Campelo IS, Morlighem JRL, Melo LM, Freitas VJF. Cell-penetrating peptides (CPPs): from delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. J Biotechnol. 2017;252:15–26.

    CAS  PubMed  Google Scholar 

  144. Li H, Tsui TY, Ma W. Intracellular delivery of molecular cargo using cell-penetrating peptides and the combination strategies. Int J Mol Sci. 2015;16(8):19518–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 2014;24(6):1020–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Yamashita H, Kato T, Oba M, Misawa T, Hattori T, Ohoka N, et al. Development of a cell-penetrating peptide that exhibits responsive changes in its secondary structure in the cellular environment. Sci Rep. 2016;6:33003.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Jeong EJ, Choi M, Lee J, Rhim T, Lee KY. The spacer arm length in cell-penetrating peptides influences chitosan/siRNA nanoparticle delivery for pulmonary inflammation treatment. Nanoscale. 2015;7(47):20095–104.

    CAS  PubMed  Google Scholar 

  148. Chaterji S, Ahn EH, Kim DH. CRISPR genome engineering for human pluripotent stem cell research. Theranostics. 2017;7(18):4445–69.

    PubMed  PubMed Central  Google Scholar 

  149. Gabrielson NP, Lu H, Yin L, Li D, Wang F, Cheng J. Reactive and bioactive cationic alpha-helical polypeptide template for nonviral gene delivery. Angew Chem Int Ed Engl. 2012;51(5):1143–7.

    CAS  PubMed  Google Scholar 

  150. He H, Zheng N, Song Z, Kim KH, Yao C, Zhang R, et al. Suppression of hepatic inflammation via systemic siRNA delivery by membrane-disruptive and endosomolytic helical polypeptide hybrid nanoparticles. ACS Nano. 2016;10(2):1859–70.

    CAS  PubMed  Google Scholar 

  151. Lu H, Wang J, Bai Y, Lang JW, Liu S, Lin Y, et al. Ionic polypeptides with unusual helical stability. Nat Commun. 2011;2:206.

    PubMed  Google Scholar 

  152. Zheng N, Song Z, Yang J, Liu Y, Li F, Cheng J, et al. Manipulating the membrane penetration mechanism of helical polypeptides via aromatic modification for efficient gene delivery. Acta Biomater. 2017;58:146–57.

    CAS  PubMed  Google Scholar 

  153. Vert M, Doi Y, Hellwich KH, Hess M, Hodge P, Kubisa P, et al. Terminology for biorelated polymers and applications (IUPAC recommendations 2012). Pure Appl Chem. 2012;84(2):377–408.

    CAS  Google Scholar 

  154. Yang J, Bahreman A, Daudey G, Bussmann J, Olsthoorn RC, Kros A. Drug delivery via cell membrane fusion using lipopeptide modified liposomes. ACS Cent Sci. 2016;2(9):621–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017;1:889–901.

    PubMed  PubMed Central  Google Scholar 

  156. Lu C, Stewart DJ, Lee JJ, Ji L, Ramesh R, Jayachandran G, et al. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS One. 2012;7(4):e34833.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Phase I Study of IV DOTAP: cholesterol-Fus1 in non-small-cell lung cancer [Available from: https://ClinicalTrials.gov/show/NCT00059605.

  158. Study of PNT2258 for Treatment of Relapsed or Refractory Non-Hodgkin's Lymphoma [Available from: https://ClinicalTrials.gov/show/NCT01733238.

  159. A Study of PNT2258 in Patients With Advanced Solid Tumors [Available from: https://ClinicalTrials.gov/show/NCT01191775.

  160. Harb WA, Lakhani N, Logsdon A, Steigelman M, Smith-Green H, Gaylor S, et al. The BCL2 targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 is active in patients with relapsed or refractory non-Hodgkin’s lymphoma. Blood. 2014;124(21):1716.

    Google Scholar 

  161. Tolcher AW, Rodrigueza WV, Rasco DW, Patnaik A, Papadopoulos KP, Amaya A, et al. A phase 1 study of the BCL2-targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2014;73(2):363–71.

    CAS  PubMed  Google Scholar 

  162. Safety and Tolerability Study of SNS01-T in Relapsed or Refractory B Cell Malignancies (Multiple Myeloma, B Cell Lymphoma, or Plasma Cell Leukemia (PCL) [Available from: https://ClinicalTrials.gov/show/NCT01435720.

  163. Siegel DS, McDonald A, Novitzky N, Bensinger W, Craig M, van Rhee F, et al. Mature results of a phase 1-2 open-label, dose-escalation study of intravenous SNS01-T in patients (pts) with relapsed or refractory B-cell malignancies. Blood. 2014;124(21):4464.

    Google Scholar 

  164. Pilot Study of BC-819/PEI and BCG in Patients With Superficial Transitional Cell Bladder Carcinoma [Available from: https://ClinicalTrials.gov/show/NCT01878188.

  165. Phase 1/2a Study of DTA-H19 in Advanced Stage Ovarian Cancer [Available from: https://ClinicalTrials.gov/show/NCT00826150.

  166. Lavie O, Edelman D, Levy T, Fishman A, Hubert A, Segev Y, et al. A phase 1/2a, dose-escalation, safety, pharmacokinetic, and preliminary efficacy study of intraperitoneal administration of BC-819 (H19-DTA) in subjects with recurrent ovarian/peritoneal cancer. Arch Gynecol Obstet. 2017;295(3):751–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Sidi AA, Ohana P, Benjamin S, Shalev M, Ransom JH, Lamm D, et al. Phase I/II marker lesion study of intravesical BC-819 DNA plasmid in H19 over expressing superficial bladder cancer refractory to bacillus Calmette-Guerin. J Urol. 2008;180(6):2379–83.

    PubMed  Google Scholar 

  168. Study With Atu027 in Patients With Advanced Solid Cancer [Available from: https://ClinicalTrials.gov/show/NCT00938574.

  169. Atu027 Plus Gemcitabine in Advanced or Metastatic Pancreatic Cancer (Atu027-I-02) [Available from: https://ClinicalTrials.gov/show/NCT01808638.

  170. Aleku M, Schulz P, Keil O, Santel A, Schaeper U, Dieckhoff B, et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res. 2008;68(23):9788–98.

    CAS  PubMed  Google Scholar 

  171. Schultheis B, Strumberg D, Kuhlmann J, Wolf M, Link K, Seufferlein T, et al. A phase Ib/IIa study of combination therapy with gemcitabine and Atu027 in patients with locally advanced or metastatic pancreatic adenocarcinoma. J Clin Oncol. 2016;34(4_suppl):385.

    Google Scholar 

  172. Schultheis B, Strumberg D, Santel A, Vank C, Gebhardt F, Keil O, et al. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J Clin Oncol. 2014;32(36):4141–8.

    CAS  PubMed  Google Scholar 

  173. Silence T. Pancreatic cancer study Atu027-I-02 Interim analysis 2015 [Available from: https://www.silence-therapeutics.com/media/1263/atu027-phase-2a-pancreatic-cancer-interim-analysis.pdf.

  174. Phase I, Multicenter, dose escalation study of DCR-MYC in patients with solid tumors, multiple myeloma, or lymphoma [Available from: https://ClinicalTrials.gov/show/NCT02110563.

  175. Tolcher AW, Papadopoulos KP, Patnaik A, Rasco DW, Martinez D, Wood DL, et al. Safety and activity of DCR-MYC, a first-in-class Dicer-substrate small interfering RNA (DsiRNA) targeting MYC, in a phase I study in patients with advanced solid tumors. J Clin Oncol. 2015;33(15_suppl):11006.

    Google Scholar 

  176. Safety Study of a Cell Penetrating Peptide (p28) to Treat Solid Tumors That Resist Standard Methods of Treatment [Available from: https://ClinicalTrials.gov/show/NCT00914914.

  177. p28 in Treating Younger Patients With Recurrent or Progressive Central Nervous System Tumors [Available from: https://ClinicalTrials.gov/show/NCT01975116.

  178. Lulla RR, Goldman S, Beattie C, Yamada T, Pollack I, Fisher PG, et al. Phase 1 trial of p28 (NSC745104), a non-HDM2 mediated peptide inhibitor of p53 ubiquitination in children with recurrent or progressive CNS tumors: a final report from the Pediatric Brain Tumor Consortium. J Clin Oncol. 2015;33(15_suppl):10059.

    Google Scholar 

  179. Warso MA, Richards JM, Mehta D, Christov K, Schaeffer C, Rae Bressler L, et al. A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours. Br J Cancer. 2013;108(5):1061–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Senevirathne SA, Washington KE, Biewer MC, Stefan MC. PEG based anti-cancer drug conjugated prodrug micelles for the delivery of anti-cancer agents. J Mater Chem B. 2016;4(3):360–70.

    CAS  PubMed  Google Scholar 

  181. Li W, Zhan P, De Clercq E, Lou H, Liu X. Current drug research on PEGylation with small molecular agents. Prog Polym Sci. 2013;38(3):421–44.

    CAS  Google Scholar 

  182. C-f X, Wang J. Delivery systems for siRNA drug development in cancer therapy. Asian J Pharm Sci. 2015;10(1):1–12.

    Google Scholar 

  183. Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1(1):10–29.

    PubMed  PubMed Central  Google Scholar 

  184. Zuckerman JE, Davis ME. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov. 2015;14(12):843–56.

    CAS  PubMed  Google Scholar 

  185. Tatiparti K, Sau S, Kashaw SK, Iyer AK. siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials (Basel). 2017;7(4).

    PubMed Central  Google Scholar 

  186. Stern JM, Kibanov Solomonov VV, Sazykina E, Schwartz JA, Gad SC, Goodrich GP. Initial evaluation of the safety of nanoshell-directed photothermal therapy in the treatment of prostate disease. Int J Toxicol. 2016;35(1):38–46.

    CAS  PubMed  Google Scholar 

  187. Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci. 2017;38(4):406–24.

    CAS  PubMed  Google Scholar 

  188. Charlesworth CT, Deshpande PS, Dever DP, Dejene B, Gomez-Ospina N, Mantri S, et al. Identification of pre-existing adaptive immunity to Cas9 proteins in humans. bioRxiv. 2018.

  189. Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018;36(8):765–71.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

B. E. G. acknowledges fellowship support from the Alfred P. Sloan Foundation, the University of Iowa Graduate College, and the National GEM Consortium. E. J. Devor acknowledges support from the University of Iowa Department of Obstetrics and Gynecology Research Development Fund. A.K.S. acknowledges support from the National Cancer Institute at the National Institutes of Health (5P30CA086862) and the Lyle and Sharon Bighley Chair of Pharmaceutical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliasger K. Salem.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Givens, B.E., Naguib, Y.W., Geary, S.M. et al. Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics. AAPS J 20, 108 (2018). https://doi.org/10.1208/s12248-018-0267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-018-0267-9

KEY WORDS

Navigation