Skip to main content

Advertisement

Log in

Why Drugs Fail in Late Stages of Development: Case Study Analyses from the Last Decade and Recommendations

  • Commentary
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

New drug development is both resource and time intensive, where later clinical stages result in significant costs. We analyze recent late-stage failures to identify drugs where failures result from inadequate scientific advances as well as drugs where we believe pitfalls could have been avoided. These can be broadly classified into two categories: 1) where science is mature and the failures can be avoided through rigorous and prospectively determined decision-making criteria, scientific curiosity, and discipline to follow up on emerging findings; and 2) where problems encountered in Phase 3 failures cannot be explained at this time, as the science is not sufficiently advanced and companies/investigators need to recognize the possibility of deficiency of our knowledge. Through these case studies, key themes critical for successful drug development emerge—understanding the therapeutic pathway including receptor and signaling biology, pharmacological responses related to safety and efficacy, pharmacokinetics of the drug and exposure at target site, optimum dose, and dosing regimen; and identification of patient sub-populations likely to respond and will have a favorable benefit-risk profile, design of clinical trials, and a quantitative framework that can guide data-driven decision making. It is essential that the right studies are conducted early in the development process to answer the key questions, with the emphasis on learning in the early stages of development, whereas Phase 3 should be reserved for confirming the safety and efficacy. Utilization of innovative technology in identifying patients based on molecular signature of their disease, rapid assessment of pharmacological response, mechanistic modeling of emerging data, seamless operational processes to reduce start-up and wind-down time for clinical trials through use of electronic health records and data mining, and development of novel and objective clinical efficacy endpoints are some concepts for improving the success rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. I

Similar content being viewed by others

REFERENCES

  1. PhRMA. Modernizing Drug Discovery, Development & Approval. 2016 Mar 31. < http://www.phrma.org/report/policy-solutions-modernizing-drug-discovery-development-and-approval>.

  2. Thomas DW, Burns J, Audette J, Carrol A, Dow-Hygelund C, Hay M. Clinical development success rates 2006–2015. San Diego: Biomedtracker/Washington, DC: BIO/Bend: Amplion. 2016 Jun.<https://www.bio.org/sites/default/files/Clinical%20Development%20Success%20Rates%202006-2015%20-%20BIO,%20Biomedtracker,%20Amplion%202016.pdf>.

  3. Philippidis A. Top 10 clinical trial failures of 2013. Genetic Engineering & Biotechnology News. 2014 Feb 3. <http://www.genengnews.com/insight-and-intelligence/top-10-clinical-trial-failures-of-2013/77900029/?page=2>.

  4. Lowe D. Mongersen Fails. Sc Translation Med 2017. <http://blogs.sciencemag.org/pipeline/archives/2017/10/23/mongersen-fails>.

  5. US Food and Drug Administration. 22 Case studies where Phase 2 and phase 3 trials had divergent results. Jan 2017. https://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Reports/UCM535780.pdf

  6. Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2008;358(20):2127–37.

  7. Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14(7):475–86.

  8. Yoshida K, Zhao P, Zhang L, Abernethy DR, Rekić D, Reynolds KS, et al. In vitro-in vivo extrapolation of metabolism- and transporter-mediated drug-drug interactions-overview of basic prediction methods. J Pharm Sci. 2017;106(9):2209–13.

  9. Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ, et al. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther. 2011;89(2):259–67.

  10. Stockbridge N, Morganroth J, Shah RR, Garnett C. Dealing with global safety issues. Drug Saf. 2013;36(3):167–82.

    Article  PubMed  Google Scholar 

  11. Vicente J, Stockbridge N, Strauss DG. Evolving regulatory paradigm for proarrhythmic risk assessment for new drugs. J Electrocardiol. 2016;49(6):837–42.

    Article  PubMed  Google Scholar 

  12. Crumb WJ, Vicente J, Johannesen L, Strauss DG. An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel. J Pharmacol Toxicol Methods. 2016;81:251–62.

    Article  PubMed  CAS  Google Scholar 

  13. Garnett C, Bonate PL, Dang Q, Ferber G, Huang D, Liu J, et al. Scientific white paper on concentration-QTc modeling. J Pharmacokinet Pharmacodyn. 2017; https://doi.org/10.1007/s10928-017-9558-5. Erratum in: J Pharmacokinet Pharmacodyn. 2018 Jan 12

  14. Khorassani F, Hilas O. Bapineuzumab, an investigational agent for Alzheimer’s disease. P T. 2013;38(2):89–91.

    PubMed  PubMed Central  Google Scholar 

  15. Berk C, Sabbagh MN. Successes and failures for drugs in late-stage development for Alzheimer’s disease. Drugs Aging. 2013;30(10):783–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Schneider LS, Mangialasche F, Andreasen N, Feldman H, Giacobini E, Jones R, et al. M. Clinical trials and late-stage drug development for Alzheimer's disease: an appraisal from 1984 to 2014. J Intern Med. 2014;275(3):251–83.

  17. Cummings J, Aisen PS, DuBois B, Frölich L, Jack CR, Jones RW, et al. Drug development in Alzheimer’s disease: the path to 2025. Alzheimers Res Ther. 2016;8(1):39.

  18. Salloway S, Sperling R, Gilman S, Fox NC, Blennow K, Raskind M, et al. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer’s disease. Neurology. 2009;73(24):2061–70.

  19. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N Engl J Med. 2014;370(4):322–33.

  20. Merck pulls plug on Phase 2/3 BACE inhibitor trial. https://www.alzforum.org/news/research-news/merck-pulls-plug-phase-23-bace-inhibitor-trial.

  21. Mullard A. BACE inhibitor bust in Alzheimer trial. Nat Rev Drug Discov. 2017;16(3):155.

    Google Scholar 

  22. Cholesterol Treatment Trialists (CTT) Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.

    Article  CAS  Google Scholar 

  23. Rittershaus CW, Miller DP, Thomas LJ, Picard MD, Honan CM, Emmett CD, et al. Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol. 2000;20(9):2106–12.

  24. Goldberg AS, Hegele RA. Cholesteryl ester transfer protein inhibitors for dyslipidemia: focus on dalcetrapib. Drug Des Devel Ther. 2012;6:251–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Niesor EJ. Different effects of compounds decreasing cholesteryl ester transfer protein activity on lipoprotein metabolism. Curr Opin Lipidol. 2011;22(4):288–95.

    Article  PubMed  CAS  Google Scholar 

  26. Stroes ES, Kastelein JJ, Benardeau A, Kuhlmann O, Blum D, Campos LA, et al. Dalcetrapib: no off-target toxicity on blood pressure or on genes related to the renin-angiotensin-aldosterone system in rats. Br J Pharmacol. 2009;158(7):1763–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet. 2011;378(9802):1547–59.

  28. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. New Engl J Med. 2012;367(22):2089–99.

  29. Tardif JC, Rhéaume É, Perreault LP, Grégoire JC, Zada YF, Asselin G, et al. Pharmacogenomic determinants of the cardiovascular effects of dalcetrapib. Circ Cardiovasc Genet. 2015;8(2):372–82.

    Article  PubMed  CAS  Google Scholar 

  30. Nicholls SJ, Lincoff A, Barter P. Late-Breaking Clinical Trials II. The ACCELERATE trial: impact of the cholesteryl ester transfer protein inhibitor evacetrapib on cardiovascular outcome. 65th Annual Scientific Session and Expo of the American College of Cardiology. 2016 Apr 2.

  31. HPS3/TIMI55–REVEAL Collaborative Group. Effects of anacetrapib in patients with atherosclerotic vascular disease. New Engl J Med. 2017;377(13):1217–27.

    Article  Google Scholar 

  32. Taylor NP. Merck writes off big bet on CETP drug anacetrapib. 2017 Oct 12. <http://investors.merck.com/investors/financial-news/press-release-details/2017/Merck-Provides-Update-on-Anaceptrapib-Development Program/default.aspx>.

  33. Forrest MJ, Bloomfield D, Briscoe RJ, Brown PN, Cumiskey AM, Ehrhart J, et al. Torcetrapib-induced blood pressure elevation is independent of CETP inhibition and is accompanied by increased circulating levels of aldosterone. Br J Pharmacol. 2008;154(7):1465–73.

  34. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. New Engl J Med. 2007;357(21):2109–22.

  35. Learning lessons from Pfizer’s $800 million failure. Nat Rev Drug Discov. 2011;10:163–164.

  36. Peloso GM, Auer PL, Bis JC, Voorman A, Morrison AC, Stitziel NO, et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am J Hum Genet. 2014;94(2):223–32.

  37. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet. 2012;380(9841):572–80.

  38. CARDIoGRAMplusC4D Consortium. A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–30.

    Article  CAS  Google Scholar 

  39. Zanoni P, Khetarpal SA, Larach DB, Hancock-Cerutti WF, Millar JS, Cuchel M, et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science. 2016;351(6278):1166–71.

  40. Boirivant M, Pallone F, Di Giacinto C, Fina D, Monteleone I, Marinaro M, et al. Inhibition of Smad7 with a specific antisense oligonucleotide facilitates TGF-beta1-mediated suppression of colitis. Gastroenterology. 2006;131:1786–98.

    Article  PubMed  CAS  Google Scholar 

  41. Monteleone G, Neurath MF, Ardizzone S, Di Sabatino A, Fantini MC, Castiglione F, et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn's disease. N Engl J Med. 2015;372:1104–13.

    Article  PubMed  CAS  Google Scholar 

  42. Feagan BG, Sands BE, Rossiter G, Li X, Usiskin K, Zhan X, et al. Effects of mongersen (GED-0301) on endoscopic and clinical outcomes in patients with active Crohn's disease. Gastroenterology. 2018;154(1):61–64.e6. https://doi.org/10.1053/j.gastro.2017.08.035.

  43. Celgene. Celgene Provides Update on GED-0301 (mongersen) Inflammatory Bowel Disease Program . Oct 2017. http://files.shareholder.com/downloads/AMDA-262QUJ/5688017438x0x960320/4F260281-22B6-4691-B4BF-06ACF9E763FA/CELG_News_2017_10_19_General_Releases.pdf.

  44. Watkins PB. Drug safety sciences and the bottleneck in drug development. Clin Pharmacol Ther. 2011;89(6):788–90.

    Article  PubMed  CAS  Google Scholar 

  45. Mosedale M, Watkins PB. Drug-induced liver injury: advances in mechanistic understanding that will inform risk management. Clin Pharmacol Ther. 2017;101(4):469–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. United States Department of Health and Human Services News. Rezulin to be withdrawn from the market. 2000 Mar 21. <http://www.fda.gov/ohrms/dockets/ac/00/backgrd/3634b1a_tab6c.htm>.

  47. Stiles, S. Exanta withdrawn from market worldwide, further studies halted. Medscape. 2006 Feb 16. http://www.medscape.com/viewarticle/788220.

  48. European Medicines Agency Press Office. AstraZeneca withdraws its application for Ximelagatran 36-mg film-coated tablets. 2006 Feb 16. <http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2010/02/WC500074073.pdf>.

  49. Naik H, Lu J, Cao C, Pfister M, Vakilynejad M, Leifke E. Pharmacometric approaches to guide dose selection of the novel GPR40 agonist TAK-875 in subjects with type 2 diabetes mellitus. CPT Pharmacometrics Syst Pharmacol. 2013;2:e22. https://doi.org/10.1038/psp.2012.23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lead GPR40 agonist bites the dust. Nat Rev Drug Discov. 2014;13(2):91.

  51. Burant CF, Viswanathan P, Marcinak J, Cao C, Vakilynejad M, Xie B, et al. TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2012;379(9824):1403–11.

  52. Aleo MD, Luo Y, Swiss R, Bonin PD, Potter DM, Will Y. Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump. Hepatology. 2014;60(3):1015–22.

    Article  PubMed  CAS  Google Scholar 

  53. Uetrecht J, Naisbitt DJ. Idiosyncratic adverse drug reactions: current concepts. Pharmacol Rev. 2013;65(2):779–808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Chen M, Suzuki A, Borlak J, Andrade RJ, Lucena MI. Drug-induced liver injury: interactions between drug properties and host factors. J Hepatol. 2015;63(2):503–14.

    Article  PubMed  CAS  Google Scholar 

  55. Sharma AM, Uetrecht J. Bioactivation of drugs in the skin: relationship to cutaneous adverse drug reactions. Drug Metab Rev. 2014;46(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  56. Kim SH, Naisbitt DJ. Update on advances in research on idiosyncratic drug-induced liver injury. Allergy Asthma Immunol Res. 2016;8(1):3–11.

    Article  PubMed  CAS  Google Scholar 

  57. Maria VA, Victorino RM. Diagnostic value of specific T cell reactivity to drugs in 95 cases of drug induced liver injury. Gut. 1997;41(4):534–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lin C, Khetani SR. Advances in engineered liver models for investigating drug-induced liver injury. Biomed Res Int. 2016; Epub Sept 20.

  59. Funk C, Roth A. Current limitations and future opportunities for prediction of DILI from in vitro. Arch Toxicol. 2017;91(1):131–42.

    Article  PubMed  CAS  Google Scholar 

  60. DILIsym Services. http://www.dilisymservices.com/

  61. Mulliner D, Schmidt F, Stolte M, Spirkl HP, Czich A, Amberg A. Computational models for human and animal hepatotoxicity with a global application scope. Chem Res Toxicol. 2016;29(5):757–67.

    Article  PubMed  CAS  Google Scholar 

  62. Chan R, Benet LZ. Evaluation of DILI predictive hypotheses in early drug development. Chem Res Toxicol. 2017;30(4):1017–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Benet LZ. The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J Pharm Sci. 2013;102(1):34–42.

    Article  PubMed  CAS  Google Scholar 

  64. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.

    Article  PubMed  CAS  Google Scholar 

  65. Chan R, Wei CY, Chen YT, Benet LZ. Use of the biopharmaceutics drug disposition classification system (BDDCS) to help predict the occurrence of idiosyncratic cutaneous adverse drug reactions associated with antiepileptic drug usage. AAPS J. 2016;18(3):757–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sheiner LB. Learning versus confirming in clinical drug development. Clin Pharmacol Ther. 1997;61(3):275–91.

    Article  PubMed  CAS  Google Scholar 

  67. Temple R, Stockbridge NL. BiDil for heart failure in black patients: the US Food and Drug Administration perspective. Ann Intern Med. 2007;146(1):57–62.

    Article  PubMed  Google Scholar 

  68. Farkas RH, Unger EF, Zolpidem TR. Driving impairment—identifying persons at risk. N Engl J Med. 2013;369(8):689–91.

    Article  PubMed  CAS  Google Scholar 

  69. Huang SM, Abernethy DR, Wang Y, Zhao P, Zineh I. The utility of modeling and simulation in drug development and regulatory review. J Pharm Sci. 2013;102(9):2912–23.

    Article  PubMed  CAS  Google Scholar 

  70. Opdivo (nivolumab) United States prescribing information. 2016. http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/125554s016lbl.pdf.

  71. Bristol-Myers Squibb Announces Top-Line Results from CheckMate -026, a Phase 3 Study of Opdivo (nivolumab) in Treatment-Naïve Patients with Advanced Non-Small Cell Lung Cancer. 2016 Aug 5. http://investor.bms.com/investors/news-and-events/press-releases/press-release-details/2016/Bristol-Myers-Squibb-Announces-Top-Line-Results-from-CheckMate--026-a-Phase-3-Study-of-Opdivo-nivolumab-in-Treatment-Nave-Patients-with-Advanced-Non-Small-Cell-Lung-Cancer/default.aspx.

  72. Merck’s KEYTRUDA® (pembrolizumab) Demonstrates Superior Progression-Free and Overall Survival Compared to Chemotherapy as First-Line Treatment in Patients with Advanced Non-Small Cell Lung Cancer. 2016 Jun 16. http://investors.merck.com/news/press-release-details/2016/Mercks-KEYTRUDApembrolizumab-Demonstrates-Superior-Progression-Free-and-Overall-Survival-Compared-to-Chemotherapy-as-First-Line-Treatment-in-Patients-with-Advanced-Non-Small-Cell-Lung-Cancer/default.aspx

  73. Aveo Oncology. Tivozanib Hydrochloride in Advanced renal cell carcinoma. 2013 May 02. < http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/OncologicDrugsAdvisoryCommittee/UCM350076.pdf>.

  74. Vicini P, Graaf PH. Systems pharmacology for drug discovery and development: paradigm shift or flash in the pan? Clin Pharmacol Ther. 2013;93(5):379–81.

    Article  PubMed  CAS  Google Scholar 

  75. Eastman P. ODAC votes no on tivozanib for advanced renal cell carcinoma. Oncology Times. 2013;35(11):10–1.

  76. Committee for Medicianl Products for Human Use (CHMP). Summary of opinion. Fotivda (tivozanib hydrochloride monohydrate. <http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion_-Initial_authorisation/human/004131/WC500229916.pdf>.

  77. Van Emburgh BO, Arena S, Siravegna G, Lazzari L, Crisafulli G, Corti G, et al. Acquired RAS or EGFR mutations and duration of response to EGFR blockade in colorectal cancer. Nat Commun. 2016;7:13665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Vical Phase 3 Trial of Allovectin® Fails to Meet Efficacy Endpoints. 2013 Aug 12. < http://www.vical.com/investors/news-releases/News-Release-Details/2013/Vical-Phase-3-Trial-of-AllovectinR-Fails-to-Meet-Efficacy-Endpoints/default.aspx>.

  79. Agarwala SS. Intralesional therapy for advanced melanoma: promise and limitation. Curr Opin Oncol. 2015;27(2):151–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bedikian AY, Richards J, Kharkevitch D, Atkins MB, Whitman E, Gonzalez RA. Phase 2 study of high-dose Allovectin-7 in patients with advanced metastatic melanoma. Melanoma Res. 2010;20(3):218–26.

    PubMed  CAS  Google Scholar 

  81. Andtbacka RH, Gonzalez R, Wloch MK, Strause L, Stardal K, Chu A, et al. A phase 3 clinical trial to evaluate the safety and efficacy of treatment with 2 mg intralesional allovectin-7® compared to dacarbazine (DTIC) or temozolomide (TMZ) in subjects with recurrent metastatic melanoma. In Proceedings of the 10th International Meeting of the Society for Melanoma Research 2013 Nov. <http://www.vical.com/investors/events-presentations/Event-Details/2013/Allovectin-Phase-3-Results---Society-for-Melanoma-Research-Meeting/default.aspx>.

  82. Benet LZ. Predicting pharmacokinetics/pharmacodynamics in the individual patient: separating reality from hype. J Clin Pharmacol. 2018; in press.

  83. United States Food and Drug Administration. Table of Pharmacogenomic Biomarkers in Drug Labeling. 2017 Oct 3. http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm

  84. Lesko LJ, Salerno RA, Spear BB, Anderson DC, Anderson T, Brazell C, et al. Pharmacogenetics and pharmacogenomics in drug development and regulatory decision making: report of the first FDA-PWG-PhRMA-DruSafe Workshop. J Clin Pharmacol. 2003;43(4):342–58.

  85. Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 2016;15(7):473–84.

    Article  PubMed  CAS  Google Scholar 

  86. Surveillance, Epidemiology, and End Results Program, National Cancer Institute. Cancer Stat Facts: Lung and Bronchus Cancer. http://seer.cancer.gov/statfacts/html/lungb.html.

  87. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non–small-cell lung cancer. New Engl J Med. 2010;363(18):1693–703.

  88. Blackhall F, Cappuzzo F. Crizotinib: from discovery to accelerated development to front-line treatment. Ann Oncol. 2016;27(suppl_3):iii35–41.

    Article  PubMed  Google Scholar 

  89. Columbia University. Precision Psychiatry. https://precisionmedicine.columbia.edu/clinical-delivery/precision-psychiatry.

  90. Insel T. Post by Former NIMH Director Thomas Insel: Precision Medicine for Mental Disorders. 2015 Feb 2. https://www.nimh.nih.gov/about/directors/thomas-insel/blog/2015/precision-medicine-for-mental-disorders.shtml

  91. Prowell TM, Theoret MR, Pazdur R. Seamless oncology-drug development. New Engl J Med. 2016;374(21):2001–3.

    Article  PubMed  Google Scholar 

  92. Milligan PA, Brown MJ, Marchant B, Martin SW, Graaf PH, Benson N, et al. Model-based drug development: a rational approach to efficiently accelerate drug development. Clin Pharmacol Ther. 2013;93(6):502–14.

    Article  PubMed  CAS  Google Scholar 

  93. Peck CC, Rubin DB, Sheiner LB. Hypothesis: a single clinical trial plus causal evidence of effectiveness is sufficient for drug approval. Clin Pharmacol Ther. 2003;73(6):481–90.

    Article  PubMed  Google Scholar 

  94. Mould DR. Model-based meta-analysis: an important tool for making quantitative decisions during drug development. Clin Pharmacol Ther. 2012;92(3):283–6.

    Article  PubMed  CAS  Google Scholar 

  95. Center for Drug Evaluation and Research, FDA. Suvorexant Medical Review: Application Number 204569Orig1s000.2013. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/204569Orig1s000MedR.pdf.

  96. Kimko H, Berry S, O’Kelly M, Mehrotra N, Hutmacher M, Sethuraman V. Use of statistical and pharmacokinetic–pharmacodynamic modeling and simulation to improve decision-making: a section summary report of the trends and innovations in clinical trial statistics conference. J Biopharm Stat. 2017;27(3):554–67.

    Article  PubMed  Google Scholar 

  97. Barnes PJ, Pocock SJ, Magnussen H, Iqbal A, Kramer B, Higgins M, et al. Integrating indacaterol dose selection in a clinical study in COPD using an adaptive seamless design. Pulm Pharmacol Ther. 2010;23(3):165–71.

  98. Cuffe RL, Lawrence D, Stone A, Vandemeulebroecke M. When is a seamless study desirable? Case studies from different pharmaceutical sponsors. Pharm Stat. 2014;13(4):229–37.

    Article  PubMed  Google Scholar 

  99. Donohue JF, Fogarty C, Lötvall J, Mahler DA, Worth H, Yorgancioglu A, et al. Once-daily bronchodilators for chronic obstructive pulmonary disease: indacaterol versus tiotropium. Am J Respir Crit Care Med. 2010;182(2):155–62.

  100. Wang Y, Lee JY, Michele T, Chowdry BA, Gobburu JV. Limitations of model-based dose selection for indacaterol in patients with chronic obstructive pulmonary disease. Int J Clin Pharmacol Ther. 2012;50(9):622–30.

    Article  PubMed  CAS  Google Scholar 

  101. Cox TM, Drelichman G, Cravo R, Balwani M, Burrow TA, Martins AM, et al. Eliglustat compared with imiglucerase in patients with Gaucher's disease type 1 stabilised on enzyme replacement therapy: a phase 3, randomised, open-label, non-inferiority trial. Lancet. 2015;385(9985):2355–62.

  102. Denayer T, Stöhr T, Van Roy M. Animal models in translational medicine: validation and prediction. New Horiz Transl Med. 2014;2(1):5–11.

    Google Scholar 

  103. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, Macleod MR Can animal models of disease reliably inform human studies? PLoS Med 2010;7(3):e1000245.

  104. McGonigle P, Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem Pharmacol. 2014;87(1):162–71.

    Article  PubMed  CAS  Google Scholar 

  105. Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6(2):114–8.

    PubMed  PubMed Central  Google Scholar 

  106. Horvath P, Aulner N, Bickle M, Davies AM, Del Nery E, Ebner D, et al. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov. 2016;15(11):751–69.

    Article  PubMed  CAS  Google Scholar 

  107. Sharma SV, Haber DA, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 2010;10(4):241–53.

    Article  PubMed  CAS  Google Scholar 

  108. Poirier AF, Murphy WR. The impact of breakthrough therapy designation on development strategies and timelines for nononcology drugs and vaccines. Clin Pharmacol Ther. 2016;100(6):603–5.

    Article  PubMed  CAS  Google Scholar 

  109. Shea M, Ostermann L, Hohman R, Roberts S, Kozak M, Dull R, et al. Regulatory watch: impact of breakthrough therapy designation on cancer drug development. Nat Rev Drug Discov. 2016;15(3):152.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarnath Sharma.

Ethics declarations

Disclosure

DAP and AS are employees of Janssen and hold stock in Johnson & Johnson. LZB has no conflicts of interest to disclose. We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parasrampuria, D.A., Benet, L.Z. & Sharma, A. Why Drugs Fail in Late Stages of Development: Case Study Analyses from the Last Decade and Recommendations. AAPS J 20, 46 (2018). https://doi.org/10.1208/s12248-018-0204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-018-0204-y

KEY WORDS

Navigation