Skip to main content

Advertisement

Log in

Exosomes for the Enhanced Tissue Bioavailability and Efficacy of Curcumin

  • Research Article
  • Theme: Therapeutic and Diagnostic Applications of Exosomes and other Extracellular Vesicles
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Exosomes are extracellular microvesicles with a particle size of 30–100 nm and carry a cargo of proteins, lipids, RNA, and DNA. Their properties of shuttling in-and-out of the cells suggest that these particles can be exploited as a nano drug carrier. In this manuscript, we show that curcumin can be delivered effectively using milk-derived exosomes. Curcumin when mixed with exosomes in the presence of 10% ethanol:acetonitrile (1:1) provided a drug load of 18–24%, and the formulation stored at − 80°C was stable for 6 months as determined by particle size analysis, drug load, and antiproliferative activity. The uptake of exosomes by cancer cells involved caveolae/clathrin-mediated endocytosis. Oral administration of exosomal curcumin (ExoCUR) in Sprague-Dawley rats demonstrated 3–5 times higher levels in various organs versus free agent. ExoCUR showed enhanced antiproliferative activity against multiple cancer cell lines including, breast, lung, and cervical cancer compared with the free curcumin. ExoCUR showed significantly higher anti-inflammatory activity measured as NF-κB activation in human lung and breast cancer cells. To determine in vivo antitumor activity, nude mice bearing the cervical CaSki tumor xenograft were treated with ExoCUR by oral gavage, curcumin diet, exosomes alone, and PBS as controls. While curcumin via dietary route failed to elicit any effect, exosomes had a modest (25–30%) tumor growth inhibition. However, ExoCUR showed significant inhibition (61%; p < 0.01) of the cervical tumor xenograft. No gross or systemic toxicity was observed in the rats administered with the exosomes or ExoCUR. These results suggest that exosomes can be developed as potential nano carriers for delivering curcumin which otherwise has encountered significant tissue bioavailability issues in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett. 2008;267(1):133–64. https://doi.org/10.1016/j.canlet.2008.03.025.

    Article  CAS  PubMed  Google Scholar 

  2. Bansal SS, Kausar H, Vadhanam MV, Ravoori S, Pan J, Rai SN, et al. Curcumin implants, not curcumin diet, inhibit estrogen-induced mammary carcinogenesis in ACI rats. Cancer Prev Res. 2014;7(4):456–65. https://doi.org/10.1158/1940-6207.CAPR-13-0248.

    Article  CAS  Google Scholar 

  3. Zhongfa L, Chiu M, Wang J, Chen W, Yen W, Fan-Havard P, et al. Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice. Cancer Chemother Pharmacol. 2012;69(3):679–89. https://doi.org/10.1007/s00280-011-1749-y.

    Article  PubMed  Google Scholar 

  4. Wang X, Wang Y, Chen ZG, Shin DM. Advances of cancer therapy by nanotechnology. Cancer Res Treat. 2009;41(1):1–11. https://doi.org/10.4143/crt.2009.41.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60. https://doi.org/10.1038/nrd1632.

    Article  CAS  PubMed  Google Scholar 

  6. Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26–49. https://doi.org/10.1002/smll.200700595.

    Article  CAS  PubMed  Google Scholar 

  7. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, et al. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci. 2006;92(1):5–22. https://doi.org/10.1093/toxsci/kfj130.

    Article  CAS  PubMed  Google Scholar 

  8. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW. Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol. 2007;150(5):552–8. https://doi.org/10.1038/sj.bjp.0707130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64(4):353–6. https://doi.org/10.1055/s-2006-957450.

    Article  CAS  PubMed  Google Scholar 

  10. Grill AE, Koniar B, Panyam J. Co-delivery of natural metabolic inhibitors in a self-microemulsifying drug delivery system for improved oral bioavailability of curcumin. Drug Deliv Transl Res. 2014;4(4):344–52. https://doi.org/10.1007/s13346-014-0199-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aqil F, Jeyabalan J, Kausar H, Bansal SS, Sharma RJ, Singh IP, et al. Multi-layer polymeric implants for sustained release of chemopreventives. Cancer Lett. 2012;326(1):33–40. https://doi.org/10.1016/j.canlet.2012.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gupta RC, Bansal SS, Aqil F, Jeyabalan J, Cao P, Kausar H, et al. Controlled-release systemic delivery—a new concept in cancer chemoprevention. Carcinogenesis. 2012;33(8):1608–15. https://doi.org/10.1093/carcin/bgs209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bansal SS, Kausar H, Aqil F, Jeyabalan J, Vadhanam MV, Gupta RC, et al. Curcumin implants for continuous systemic delivery: safety and biocompatibility. Drug Deliv Transl Res. 2011;1(4):332–41. https://doi.org/10.1007/s13346-011-0028-0.

    Article  CAS  PubMed  Google Scholar 

  14. Yokoyama M. Polymeric micelles as drug carriers: their lights and shadows. J Drug Target. 2014;22(7):576–83. https://doi.org/10.3109/1061186X.2014.934688.

    Article  CAS  PubMed  Google Scholar 

  15. Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B. 2016;6(4):287–96. https://doi.org/10.1016/j.apsb.2016.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine. 2012;7:1525–41. https://doi.org/10.2147/IJN.S29661ijn-7-1525.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lakhal S, Wood MJ. Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays. 2011;33(10):737–41. https://doi.org/10.1002/bies.201100076.

    Article  CAS  PubMed  Google Scholar 

  18. Aqil F, Kausar H, Agrawal AK, Jeyabalan J, Kyakulaga AH, Munagala R, et al. Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol. 2016;101(1):12–21. https://doi.org/10.1016/j.yexmp.2016.05.013.

    Article  CAS  PubMed  Google Scholar 

  19. Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett. 2016;371(1):48–61. https://doi.org/10.1016/j.canlet.2015.10.020.

    Article  CAS  PubMed  Google Scholar 

  20. Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, et al. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep. 2013;3:2534. https://doi.org/10.1038/srep02534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kausar H, Munagala R, Bansal SS, Aqil F, Vadhanam MV, Gupta RC. Cucurbitacin B potently suppresses non-small-cell lung cancer growth: identification of intracellular thiols as critical targets. Cancer Lett. 2013;332(1):35–45. https://doi.org/10.1016/j.canlet.2013.01.008.

    Article  CAS  PubMed  Google Scholar 

  22. Munagala R, Aqil F, Jeyabalan J, Gupta RC. Tanshinone IIA inhibits viral oncogene expression leading to apoptosis and inhibition of cervical cancer. Cancer Lett. 2015;356(2 Pt B):536–46. https://doi.org/10.1016/j.canlet.2014.09.037.

    Article  CAS  PubMed  Google Scholar 

  23. Paul PK, Gupta SK, Bhatnagar S, Panguluri SK, Darnay BG, Choi Y, et al. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J Cell Biol. 2010;191(7):1395–411. https://doi.org/10.1083/jcb.201006098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prasad S, Gupta SC, Tyagi AK, Aggarwal BB. Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv. 2014;32:1053-1064; https://doi.org/10.1016/j.biotechadv.2014.04.004.

  25. Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, et al. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007;179(3):1969–78.

    Article  CAS  PubMed  Google Scholar 

  26. Hata T, Murakami K, Nakatani H, Yamamoto Y, Matsuda T, Aoki N. Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem Biophys Res Commun. 2010;396(2):528–33. https://doi.org/10.1016/j.bbrc.2010.04.135S0006-291X(10)00830-2.

    Article  CAS  PubMed  Google Scholar 

  27. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18. https://doi.org/10.1021/mp700113r.

    Article  CAS  PubMed  Google Scholar 

  28. Ireson CR, Jones DJ, Orr S, Coughtrie MW, Boocock DJ, Williams ML, et al. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomark Prev. 2002;11(1):105–11.

    CAS  Google Scholar 

  29. Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. 2008;14(14):4491–9. https://doi.org/10.1158/1078-0432.CCR-08-0024.

    Article  CAS  PubMed  Google Scholar 

  30. Mulik R, Mahadik K, Paradkar A. Development of curcuminoids loaded poly(butyl) cyanoacrylate nanoparticles: physicochemical characterization and stability study. Eur J Pharm Sci. 2009;37(3–4):395–404. https://doi.org/10.1016/j.ejps.2009.03.009.

    Article  CAS  PubMed  Google Scholar 

  31. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MN. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37(3–4):223–30. https://doi.org/10.1016/j.ejps.2009.02.019.

    Article  CAS  PubMed  Google Scholar 

  32. Yadav VR, Suresh S, Devi K, Yadav S. Novel formulation of solid lipid microparticles of curcumin for anti-angiogenic and anti-inflammatory activity for optimization of therapy of inflammatory bowel disease. J Pharm Pharmacol. 2009;61(3):311–21. https://doi.org/10.1211/jpp/61.03.0005.

    Article  CAS  PubMed  Google Scholar 

  33. Chen C, Johnston TD, Jeon H, Gedaly R, McHugh PP, Burke TG, et al. An in vitro study of liposomal curcumin: stability, toxicity and biological activity in human lymphocytes and Epstein-Barr virus-transformed human B-cells. Int J Pharm. 2009;366(1–2):133–9. https://doi.org/10.1016/j.ijpharm.2008.09.009.

    Article  CAS  PubMed  Google Scholar 

  34. Ranjan AP, Mukerjee A, Helson L, Gupta R, Vishwanatha JK. Efficacy of liposomal curcumin in a human pancreatic tumor xenograft model: inhibition of tumor growth and angiogenesis. Anticancer Res. 2013;33(9):3603–9.

    CAS  PubMed  Google Scholar 

  35. Nayak AP, Mills T, Norton I. Lipid based nanosystems for curcumin: past, present and future. Curr Pharm Des. 2016;22(27):4247–56.

    Article  PubMed  Google Scholar 

  36. Wang T, Ma X, Lei Y, Luo Y. Solid lipid nanoparticles coated with cross-linked polymeric double layer for oral delivery of curcumin. Colloids Surf B Biointerfaces. 2016;148:1–11. https://doi.org/10.1016/j.colsurfb.2016.08.047.

    Article  CAS  PubMed  Google Scholar 

  37. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin-phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm. 2007;330(1–2):155–63. https://doi.org/10.1016/j.ijpharm.2006.09.025.

    Article  CAS  PubMed  Google Scholar 

  38. Bansal SS, Goel M, Aqil F, Vadhanam MV, Gupta RC. Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev Res. 2011;4(8):1158–71. https://doi.org/10.1158/1940-6207.CAPR-10-0006.

    Article  CAS  Google Scholar 

  39. Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood. 2004;104(10):3257–66. https://doi.org/10.1182/blood-2004-03-0824.

    Article  CAS  PubMed  Google Scholar 

  40. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284(49):34211–22. https://doi.org/10.1074/jbc.M109.041152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tian T, Wang Y, Wang H, Zhu Z, Xiao Z. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem. 2010;111(2):488–96. https://doi.org/10.1002/jcb.22733.

    Article  CAS  PubMed  Google Scholar 

  42. Tian T, Zhu YL, FH H, Wang YY, Huang NP, Xiao ZD. Dynamics of exosome internalization and trafficking. J Cell Physiol. 2013;228(7):1487–95. https://doi.org/10.1002/jcp.24304.

    Article  CAS  PubMed  Google Scholar 

  43. Agrawal AK, Aqil F, Jeyabalan J, Spencer WA, Beck J, Gachuki BW, et al. Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine. 2017;13(5):1627-1636;https://doi.org/10.1016/j.nano.2017.03.001.

  44. Vashisht M, Rani P, Onteru SK, Singh D. Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro. Appl Biochem Biotechnol. 2017; https://doi.org/10.1007/s12010-017-2478-4.

  45. Liao Y, Du X, Li J, Lonnerdal B. Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Mol Nutr Food Res. 2017; https://doi.org/10.1002/mnfr.201700082.

  46. Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 2010;38(1):215–24. https://doi.org/10.1093/nar/gkp857.

    Article  CAS  PubMed  Google Scholar 

  47. Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res. 2014;58(7):1561–73. https://doi.org/10.1002/mnfr.201300729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lei T, Srinivasan S, Tang Y, Manchanda R, Nagesetti A, Fernandez-Fernandez A, et al. Comparing cellular uptake and cytotoxicity of targeted drug carriers in cancer cell lines with different drug resistance mechanisms. Nanomedicine. 2011;7(3):324–32. https://doi.org/10.1016/j.nano.2010.11.004.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z, et al. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res. 2015;75(12):2520–9. https://doi.org/10.1158/0008-5472.CAN-14-3095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32(6):2003–14. https://doi.org/10.1007/s11095-014-1593-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li C, Zhang Y, Su T, Feng L, Long Y, Chen Z. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. Int J Nanomedicine. 2012;7:5995–6002. https://doi.org/10.2147/IJN.S38043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AH, Baum L. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J. 2013;15(2):324–36. https://doi.org/10.1208/s12248-012-9444-4.

    Article  CAS  PubMed  Google Scholar 

  53. Li Z, Zheng Z, Ruan J, Li Z, Tzeng CM. Chronic inflammation links cancer and Parkinson’s disease. Front Aging Neurosci. 2016;8:126. https://doi.org/10.3389/fnagi.2016.00126.

    PubMed  PubMed Central  Google Scholar 

  54. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–14. https://doi.org/10.1038/mt.2010.105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 2014;46(1):2–18. https://doi.org/10.4143/crt.2014.46.1.2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jager R, Lowery RP, Calvanese AV, Joy JM, Purpura M, Wilson JM. Comparative absorption of curcumin formulations. Nutr J. 2014;13:11. https://doi.org/10.1186/1475-2891-13-11.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Song Z, Lu Y, Zhang X, Wang H, Han J, Dong C. Novel curcumin-loaded human serum albumin nanoparticles surface functionalized with folate: characterization and in vitro/vivo evaluation. Drug Des Devel Ther. 2016;10:2643–9. https://doi.org/10.2147/DDDT.S112039.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liskova K, Kelly AL, O'Brien N, Brodkorb A. Effect of denaturation of alpha-lactalbumin on the formation of BAMLET (bovine alpha-lactalbumin made lethal to tumor cells). J Agric Food Chem. 2010;58(7):4421–7. https://doi.org/10.1021/jf903901j.

    Article  CAS  PubMed  Google Scholar 

  59. Hoque M, Dave S, Gupta P, Saleemuddin M. Oleic acid may be the key contributor in the BAMLET-induced erythrocyte hemolysis and tumoricidal action. PLoS One. 2013;8(9):e68390. https://doi.org/10.1371/journal.pone.0068390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rath EM, Duff AP, Hakansson AP, Vacher CS, Liu GJ, Knott RB, et al. Structure and potential cellular targets of HAMLET-like anti-cancer compounds made from milk components. J Pharm Pharm Sci. 2015;18(4):773–824.

    Article  PubMed  Google Scholar 

  61. Rammer P, Groth-Pedersen L, Kirkegaard T, Daugaard M, Rytter A, Szyniarowski P, et al. BAMLET activates a lysosomal cell death program in cancer cells. Mol Cancer Ther. 2010;9(1):24–32. https://doi.org/10.1158/1535-7163.MCT-09-0559.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Manicka V. Vadhanam for useful discussions and help with the animal studies. Curcumin used in this study was generously provided by Sabinsa Corp.

Funding

This work was supported by Agnes Brown Duggan Endowment and Helmsley Trust Funds, awarded to R.C.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Gupta.

Ethics declarations

Animals were maintained under a 12-h light/12-h dark cycle in accordance with the Institutional Animal Care and Use Committee (IACUC) guidelines. All the animal experiments were conducted in full compliance with local, national, ethical, and regulatory principles and local licensing regulations, per the spirit of Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) expectations for animal care and use/ethics.

Additional information

Guest Editors: Juliane Nguyen and Steven Jay

Electronic supplementary material

ESM 1

(DOCX 1814 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aqil, F., Munagala, R., Jeyabalan, J. et al. Exosomes for the Enhanced Tissue Bioavailability and Efficacy of Curcumin. AAPS J 19, 1691–1702 (2017). https://doi.org/10.1208/s12248-017-0154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0154-9

KEY WORDS

Navigation