Skip to main content

Advertisement

Log in

Role of In Vitro Release Methods in Liposomal Formulation Development: Challenges and Regulatory Perspective

  • Review Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In the past few years, measurement of drug release from pharmaceutical dosage forms has been a focus of extensive research because the release profile obtained in vitro can give an indication of the drug’s performance in vivo. Currently, there are no compendial in vitro release methods designed for liposomes owing to a range of experimental challenges, which has created a major hurdle for both development and regulatory acceptance of liposome-based drug products. In this paper, we review the current techniques that are most often used to assess in vitro drug release from liposomal products; these include the membrane diffusion techniques (dialysis, reverse dialysis, fractional dialysis, and microdialysis), the sample-and-separate approach, the in situ method, the continuous flow, and the modified United States Pharmacopeia methods (USP I and USP IV). We discuss the principles behind each of the methods and the criteria that assist in choosing the most appropriate method for studying drug release from a liposomal formulation. Also, we have included information concerning the current regulatory requirements for liposomal drug products in the United States and in Europe. In light of increasing costs of preclinical and clinical trials, applying a reliable in vitro release method could serve as a proxy to expensive in vivo bioavailability studies.

Appropriate in-vitro drug release test from liposomal products is important to predict the in-vivo performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hann IM, Prentice HG. Lipid-based amphotericin B: a review of the last 10 years of use. Int J Antimicrob Agents. 2001;17(3):161–9.

    Article  CAS  PubMed  Google Scholar 

  2. Davidson RN, Di Martino L, Gradoni L, Giacchino R, Russo R, Gaeta GB, et al. Liposomal amphotericin B (AmBisome) in Mediterranean visceral leishmaniasis: a multi-centre trial. Q J Med. 1994;87(2):75–81.

    CAS  PubMed  Google Scholar 

  3. Walsh TJ, Hiemenz JW, Seibel NL, Perfect JR, Horwith G, Lee L, et al. Amphotericin B lipid complex for invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis: Off Publ Infect Dis Soc Am. 1998;26(6):1383–96.

    Article  CAS  Google Scholar 

  4. Bowden R, Chandrasekar P, White MH, Li X, Pietrelli L, Gurwith M, et al. A double-blind, randomized, controlled trial of amphotericin B colloidal dispersion versus amphotericin B for treatment of invasive aspergillosis in immunocompromised patients. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2002;35(4):359–66.

    Article  CAS  Google Scholar 

  5. Petre CE, Dittmer DP. Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int J Nanomedicine. 2007;2(3):277–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. James ND, Coker RJ, Tomlinson D, Harris JR, Gompels M, Pinching AJ, et al. Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in AIDS. Clin Oncol. 1994;6(5):294–6.

    Article  CAS  Google Scholar 

  7. Muggia FM. Clinical efficacy and prospects for use of pegylated liposomal doxorubicin in the treatment of ovarian and breast cancers. Drugs. 1997;54(Suppl 4):22–9.

    Article  CAS  PubMed  Google Scholar 

  8. Blade J, Sonneveld P, San Miguel JF, Sutherland HJ, Hajek R, Nagler A, et al. Efficacy and safety of pegylated liposomal doxorubicin in combination with bortezomib for multiple myeloma: effects of adverse prognostic factors on outcome. Clin Lymphoma Myeloma Leuk. 2011;11(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  9. Batist G, Ramakrishnan G, Rao CS, Chandrasekharan A, Gutheil J, Guthrie T, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19(5):1444–54.

    Article  CAS  Google Scholar 

  10. Taiwanese Gynecologic Oncology G, Chou HH, Wang KL, Chen CA, Wei LH, Lai CH, et al. Pegylated liposomal doxorubicin (Lipo-Dox) for platinum-resistant or refractory epithelial ovarian carcinoma: a Taiwanese gynecologic oncology group study with long-term follow-up. Gynecol Oncol. 2006;101(3):423–8.

    Article  Google Scholar 

  11. Hong RL, Tseng YL, Chang FH. Pegylated liposomal doxorubicin in treating a case of advanced hepatocellular carcinoma with severe hepatic dysfunction and pharmacokinetic study. Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2000;11(3):349–53.

    Article  CAS  Google Scholar 

  12. Verteporfin In Photodynamic Therapy Study G. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization—verteporfin in photodynamic therapy report 2. Am J Ophthalmol. 2001;131(5):541–60.

    Article  Google Scholar 

  13. Gambling D, Hughes T, Martin G, Horton W, Manvelian G. A comparison of Depodur, a novel, single-dose extended-release epidural morphine, with standard epidural morphine for pain relief after lower abdominal surgery. Anesth Analg. 2005;100(4):1065–74.

    Article  CAS  PubMed  Google Scholar 

  14. Glantz MJ, LaFollette S, Jaeckle KA, Shapiro W, Swinnen L, Rozental JR, et al. Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J Clin Oncol Off J Am Soc Clin Oncol. 1999;17(10):3110–6.

    Article  CAS  Google Scholar 

  15. Glantz MJ, Jaeckle KA, Chamberlain MC, Phuphanich S, Recht L, Swinnen LJ, et al. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin Cancer Res: Off J Am Assoc Cancer Res. 1999;5(11):3394–402.

    CAS  Google Scholar 

  16. Sarris AH, Hagemeister F, Romaguera J, Rodriguez MA, McLaughlin P, Tsimberidou AM, et al. Liposomal vincristine in relapsed non-Hodgkin’s lymphomas: early results of an ongoing phase II trial. Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2000;11(1):69–72.

    Article  CAS  Google Scholar 

  17. Rodriguez MA, Pytlik R, Kozak T, Chhanabhai M, Gascoyne R, Lu B, et al. Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory aggressive non-Hodgkin lymphoma: report of the pivotal phase 2 study. Cancer. 2009;115(15):3475–82.

    Article  CAS  PubMed  Google Scholar 

  18. Usonis V, Bakasenas V, Valentelis R, Katiliene G, Vidzeniene D, Herzog C. Antibody titres after primary and booster vaccination of infants and young children with a virosomal hepatitis A vaccine (Epaxal). Vaccine. 2003;21(31):4588–92.

    Article  CAS  PubMed  Google Scholar 

  19. D'Acremont V, Herzog C, Genton B. Immunogenicity and safety of a virosomal hepatitis A vaccine (Epaxal) in the elderly. J Travel Med. 2006;13(2):78–83.

    Article  PubMed  Google Scholar 

  20. Herzog C, Hartmann K, Kunzi V, Kursteiner O, Mischler R, Lazar H, et al. Eleven years of Inflexal V—a virosomal adjuvanted influenza vaccine. Vaccine. 2009;27(33):4381–7.

    Article  CAS  PubMed  Google Scholar 

  21. Bangham AD. Lipid bilayers and biomembranes. Annu Rev Biochem. 1972;41:753–76.

    Article  CAS  PubMed  Google Scholar 

  22. Sessa G, Weissmann G. Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res. 1968;9(3):310–8.

    CAS  PubMed  Google Scholar 

  23. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barenholz Y. Doxil (R)—the first FDA-approved nano-drug: lessons learned. J Control Release: Off J Control Release Soci. 2012;160(2):117–34.

    Article  CAS  Google Scholar 

  25. Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19:930–4.

    Article  Google Scholar 

  26. Hixson AW, Crowell JH. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 1931;23:923–31.

    Article  CAS  Google Scholar 

  27. Burgess DJ, Hussain AS, Ingallinera TS, Chen ML. Assuring quality and performance of sustained and controlled release parenterals: workshop report. AAPS PharmSci. 2002;4(2):E7.

    Article  PubMed  Google Scholar 

  28. Soderberg L, Dyhre H, Roth B, Bjorkman S. The “inverted cup”—a novel in vitro release technique for drugs in lipid formulations. J Control Release: Off J Control Release Soci. 2006;113(1):80–8.

    Article  Google Scholar 

  29. U.S. Food and Drug Administration/Center for Drug Evaluation and Research. Guidance for industry extended release oral dosage forms: development, evaluation, and application of in vitro/in vivo correlations. In: FDA, editor. 1997. Available at: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070239.pdf.

  30. Uppoor VR. Regulatory perspectives on in vitro (dissolution)/in vivo (bioavailability) correlations. J Control Release: Off J Control Release Soci. 2001;72(1–3):127–32.

    Article  CAS  Google Scholar 

  31. Small DM. Handbook of lipid research: the physical chemistry of lipids, from alkanes to phospholipids. New York: Plenum Press; 1986.

    Google Scholar 

  32. Anderson M, Omri A. The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Deliv. 2004;11(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  33. Nakamura K, Yoshino K, Yamashita K, Kasukawa H. Designing a novel in vitro drug-release-testing method for liposomes prepared by pH-gradient method. Int J Pharm. 2012;430(1–2):381–7.

    Article  CAS  PubMed  Google Scholar 

  34. Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen J, Du X, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem. 2012;51(34):8529–33.

    Article  CAS  Google Scholar 

  35. Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28(2):172–6.

    Article  CAS  PubMed  Google Scholar 

  36. Patrick MR, Blair IJ, Feneck RO, Sebel PS. A comparison of the haemodynamic effects of propofol (‘Diprivan’) and thiopentone in patients with coronary artery disease. Postgrad Med J. 1985;61(Suppl 3):23–7.

    PubMed  Google Scholar 

  37. Simon JA, Group ES. Estradiol in micellar nanoparticles: the efficacy and safety of a novel transdermal drug-delivery technology in the management of moderate to severe vasomotor symptoms. Menopause. 2006;13(2):222–31.

    Article  PubMed  Google Scholar 

  38. Xu X, Khan MA, Burgess DJ. A two-stage reverse dialysis in vitro dissolution testing method for passive targeted liposomes. Int J Pharm. 2012;426(1–2):211–8.

    Article  CAS  PubMed  Google Scholar 

  39. Embretson J, Zupancic M, Ribas JL, Burke A, Racz P, Tenner-Racz K, et al. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature. 1993;362(6418):359–62.

  40. Kelly C, Jefferies C, Cryan SA. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv. 2011;2011:727241.

    Article  PubMed  Google Scholar 

  41. Bibi S, Lattmann E, Mohammed AR, Perrie Y. Trigger release liposome systems: local and remote controlled delivery? J Microencapsul. 2012;29(3):262–76.

    Article  CAS  PubMed  Google Scholar 

  42. Yavlovich A, Singh A, Blumenthal R, Puri A. A novel class of photo-triggerable liposomes containing DPPC:DC(8,9)PC as vehicles for delivery of doxorubcin to cells. Biochim Biophys Acta. 2011;1808(1):117–26.

    Article  CAS  PubMed  Google Scholar 

  43. Osiecka B, Jurczyszyn K, Symonowicz K, Bronowicz A, Ostasiewicz P, Czapinska E, et al. In vitro and in vivo matrix metalloproteinase expression after photodynamic therapy with a liposomal formulation of aminolevulinic acid and its methyl ester. Cell Mol Biol Lett. 2010;15(4):630–50.

    Article  CAS  PubMed  Google Scholar 

  44. Huang SL, MacDonald RC. Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim Biophys Acta. 2004;1665(1–2):134–41.

    Article  CAS  PubMed  Google Scholar 

  45. Ueno Y, Sonoda S, Suzuki R, Yokouchi M, Kawasoe Y, Tachibana K, et al. Combination of ultrasound and bubble liposome enhance the effect of doxorubicin and inhibit murine osteosarcoma growth. Cancer Biol Ther. 2011;12(4):270–7.

    Article  CAS  PubMed  Google Scholar 

  46. Smith B, Lyakhov I, Loomis K, Needle D, Baxa U, Yavlovich A, et al. Hyperthermia-triggered intracellular delivery of anticancer agent to HER2(+) cells by HER2-specific affibody (ZHER2-GS-Cys)-conjugated thermosensitive liposomes (HER2(+) affisomes). J Control Release: Off J Control Release Soci. 2011;153(2):187–94.

    Article  CAS  Google Scholar 

  47. Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res. 2000;60(5):1197–201.

    CAS  PubMed  Google Scholar 

  48. Davidsen J, Jorgensen K, Andresen TL, Mouritsen OG. Secreted phospholipase A(2) as a new enzymatic trigger mechanism for localised liposomal drug release and absorption in diseased tissue. Biochim Biophys Acta. 2003;1609(1):95–101.

    Article  CAS  PubMed  Google Scholar 

  49. Kim CK, Lim SJ. Liposome immunoassay (LIA) with antigen-coupled liposomes containing alkaline phosphatase. J Immunol Methods. 1993;159(1–2):101–6.

    Article  CAS  PubMed  Google Scholar 

  50. Simoes S, Moreira JN, Fonseca C, Duzgunes N, de Lima MC. On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev. 2004;56(7):947–65.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang JX, Zalipsky S, Mullah N, Pechar M, Allen TM. Pharmaco attributes of dioleoylphosphatidylethanolamine/cholesterylhemisuccinate liposomes containing different types of cleavable lipopolymers. Pharmacol Res: Off J Italian Pharmacol Soc. 2004;49(2):185–98.

    Article  CAS  Google Scholar 

  52. Bochot A, Fattal E. Liposomes for intravitreal drug delivery: a state of the art. J Control Release: Off J Control Release Soci. 2012;161(2):628–34.

    Article  CAS  Google Scholar 

  53. Bressler NM. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization. Am J Ophthalmol. 2001;131(5):541–60.

    Article  Google Scholar 

  54. Schroeter A, Engelbrecht T, Neubert RH, Goebel AS. New nanosized technologies for dermal and transdermal drug delivery. A review. J Biomed Nanotechnol. 2010;6(5):511–28.

    Article  CAS  PubMed  Google Scholar 

  55. Gomez C, Benito M, Teijon JM, Blanco MD. Novel methods and devices to enhance transdermal drug delivery: the importance of laser radiation in transdermal drug delivery. Ther Deliv. 2012;3(3):373–88.

    Article  CAS  PubMed  Google Scholar 

  56. Merodio M, Arnedo A, Renedo MJ, Irache JM. Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2001;12(3):251–9.

    Article  CAS  Google Scholar 

  57. Hindi KM, Ditto AJ, Panzner MJ, Medvetz DA, Han DS, Hovis CE, et al. The antimicrobial efficacy of sustained release silver-carbene complex-loaded l-tyrosine polyphosphate nanoparticles: characterization, in vitro and in vivo studies. Biomaterials. 2009;30(22):3771–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. D'Souza SS, DeLuca PP. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm Res. 2006;23(3):460–74.

    Article  PubMed  Google Scholar 

  59. Washington C. Evaluation of non-sink dialysis methods for the measurement of drug release from colloids. Int J Pharm. 1989;56:71–4.

    Article  CAS  Google Scholar 

  60. Washington C. Drug release from microdisperse systems: a critical review. Int J Pharm. 1990;58:1–12.

    Article  CAS  Google Scholar 

  61. Bautista MG, Tam KC. Evaluation of dialysis membrane process for quantifying the in vitro drug release from colloidal drug carriers. Colloids Surf A Physicochem Eng Asp. 2011;389:299–303.

    Article  Google Scholar 

  62. Levy MY, Benita S. Drug release from submicronized o/w emulsion: a new in vitro kinetic evaluation model. Int J Pharm. 1990;66:29–37.

    Article  CAS  Google Scholar 

  63. Calvo P, Vila-Jato JL, Alonso MJ. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J Pharm Sci. 1996;85(5):530–6.

    Article  CAS  PubMed  Google Scholar 

  64. Henriksen I, Sande SA, Smistad G, Agren T, Karlsen J. In vitro evaluation of drug release kinetics from liposomes by fractional dialysis. Int J Pharm. 1995;119:231–8.

    Article  CAS  Google Scholar 

  65. Hitzman CJ, Wiedmann TS, Dai H, Elmquist WF. Measurement of drug release from microcarriers by microdialysis. J Pharm Sci. 2005;94(7):1456–66.

    Article  CAS  PubMed  Google Scholar 

  66. Lasch J. Isothermic microcalorimetry. In: Torchillin VP, Weissig V, editors. Liposomes: a practical approach. Oxford: Oxford University Press; 2003.

    Google Scholar 

  67. Heeremans JL, Gerritsen HR, Meusen SP, Mijnheer FW, Gangaram Panday RS, Prevost R, et al. The preparation of tissue-type Plasminogen Activator (t-PA) containing liposomes: entrapment efficiency and ultracentrifugation damage. J Drug Target. 1995;3(4):301–10.

    Article  CAS  PubMed  Google Scholar 

  68. Wallace SJ, Li J, Nation RL, Boyd BJ. Drug release from nanomedicines: selection of appropriate encapsulation and release methodology. Drug Deliv Transl Res. 2012;2(4):284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ammoury N, Fessi H, Devissaguet JP, Puisieux F, Benita S. In vitro release kinetic pattern of indomethacin from poly(d,l-lactide) nanocapsules. J Pharm Sci. 1990;79(9):763–7.

    Article  CAS  PubMed  Google Scholar 

  70. Ruysschaert T, Marque A, Duteyrat JL, Lesieur S, Winterhalter M, Fournier D. Liposome retention in size exclusion chromatography. BMC Biotechnol. 2005;5:11.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dawoud M, Hashem FM. Comparative study on the suitability of two techniques for measuring the transfer of lipophilic drug models from lipid nanoparticles to lipophilic acceptors. AAPS PharmSciTech. 2014;15(6):1551–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Petersen S, Fahr A, Bunjes H. Flow cytometry as a new approach to investigate drug transfer between lipid particles. Mol Pharm. 2010;7(2):350–63.

    Article  CAS  PubMed  Google Scholar 

  73. Hai M, Bernath K, Tawfik D, Magdassi S. Flow cytometry: a new method to investigate the properties of water-in-oil-in-water emulsions. Langmuir: ACS J Surf Colloids. 2004;20(6):2081–5.

    Article  CAS  Google Scholar 

  74. Sato K, Obinata K, Sugawara T, Urabe I, Yomo T. Quantification of structural properties of cell-sized individual liposomes by flow cytometry. J Biosci Bioeng. 2006;102(3):171–8.

    Article  CAS  PubMed  Google Scholar 

  75. Kontoyannis CG, Douroumis D. A polarographic methodology for continuous non-destructive monitoring of drug release from liposomes. J Liposome Res. 2001;11(2–3):255–64.

    Article  CAS  PubMed  Google Scholar 

  76. Charalampopoulos N, Avgoustakis K, Kontoyannis CG. Differential pulse polarography: a suitable technique for monitoring drug release from polymeric nanoparticle dispersions. Anal Chim Acta. 2003;491:57–62.

    Article  CAS  Google Scholar 

  77. Wakiyama N, Juni K, Nakano M. Preparation and evaluation in vitro of poly lactic acid microspheres containing local anesthetics. Chem Pharm Bull. 1981;29:3363–8.

    Article  CAS  PubMed  Google Scholar 

  78. Cazzola R, Viani P, Allevi P, Cighetti G, Cestaro B. pH sensitivity and plasma stability of liposomes containing N-stearoylcysteamine. Biochim Biophys Acta. 1997;1329(2):291–301.

    Article  CAS  PubMed  Google Scholar 

  79. Burgess DJ, Davis SS, Tomlinson E. Potential use of albumin microspheres as a drug delivery systems. Int J Pharm. 1987;39:129–36.

    Article  CAS  Google Scholar 

  80. Siewert M, Dressman J, Brown CK, Shah VP, Fip, Aaps. FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms. AAPS PharmSciTech. 2003;4(1):E7.

    Article  PubMed  Google Scholar 

  81. Bhardwaj U, Burgess DJ. A novel USP apparatus 4 based release testing method for dispersed systems. Int J Pharm. 2010;388(1–2):287–94.

    Article  CAS  PubMed  Google Scholar 

  82. Bhardwaj U, Burgess DJ. Physicochemical properties of extruded and non-extruded liposomes containing the hydrophobic drug dexamethasone. Int J Pharm. 2010;388(1–2):181–9.

    Article  CAS  PubMed  Google Scholar 

  83. Abdel-Mottaleb MM, Lamprecht A. Standardized in vitro drug release test for colloidal drug carriers using modified USP dissolution apparatus I. Drug Dev Ind Pharm. 2011;37(2):178–84.

  84. U.S. Food and Drug Administration. Center for Drug Evaluation and Research (CDER). Guidance for industry. Liposome drug products chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation. Draft guidance. 2002. Available at: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm070570.pdf..

  85. Xing H, Hwang K, Lu Y. Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics. 2016;6(9):1336–52.

  86. Draft Guidance on Doxorubicin Hydrochloride. US FDA. 2010. Available at: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM199635.pdf.

  87. Yuan W, Kuai R, Dai Z, Yuan Y, Zheng N, Jiang W, et al. Development of a flow-through USP-4 apparatus drug release assay to evaluate doxorubicin liposomes. AAPS J. 2017;19(1):150–60.

    Article  CAS  PubMed  Google Scholar 

  88. Reflection paper on the data requirements for intravenous liposomal products developed with reference to an innovator liposomal product. EMA. 2011. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/07/WC500109479.pdf.

  89. Azanza JR, Sadada B, Reis J. Liposomal formulations of amphotericin B: differences according to the scientific evidence. Rev Esp Quimioter. 2015;28(6):275–81.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solomon, D., Gupta, N., Mulla, N.S. et al. Role of In Vitro Release Methods in Liposomal Formulation Development: Challenges and Regulatory Perspective. AAPS J 19, 1669–1681 (2017). https://doi.org/10.1208/s12248-017-0142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0142-0

Key Words

Navigation