Skip to main content

Advertisement

Log in

A Quality by Design Approach to Developing and Manufacturing Polymeric Nanoparticle Drug Products

  • Commentary
  • Theme: Nanotechnology in Complex Drug Products: Learning from the Past, Preparing for the Future
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The translation of nanomedicines from concepts to commercial products has not reached its full potential, in part because of the technical and regulatory challenges associated with chemistry, manufacturing, and controls (CMC) development of such complex products. It is critical to take a quality by design (QbD) approach to developing nanomedicines—using a risk-based approach to identifying and classifying product attributes and process parameters and ultimately developing a deep understanding of the products, processes, and platform. This article exemplifies a QbD approach used by BIND Therapeutics, Inc., to industrialize a polymeric targeted nanoparticle drug delivery platform. The focus of the approach is on CMC affairs but consideration is also given to preclinical, clinical, and regulatory aspects of pharmaceutical development. Processes are described for developing a quality target product profile and designing supporting preclinical studies, defining critical quality attributes and process parameters, building a process knowledge map, and employing QbD to support outsourced manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Havel H, Finch G, Strode P, Wolfgang M, Zale S, Bobe I, et al. Nanomedicines: from bench to bedside and beyond. AAPS J. 2016. doi:10.1208/s12248-016-9961-7.

  2. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.

    Article  CAS  PubMed  Google Scholar 

  3. Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41(7):2971–3010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gothwal A, Khan I, Gupta U. Polymeric micelles: recent advancements in the delivery of anticancer drugs. Pharm Res. 2016;33(1):18–39.

    Article  CAS  PubMed  Google Scholar 

  5. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.

    Article  CAS  PubMed  Google Scholar 

  6. Tunn UW, Gruca D, Bacher P. Six-month leuprorelin acetate depot formulations in advanced prostate cancer: a clinical evaluation. Clin Interv Aging. 2013;8:457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ballav C, Gough S. Bydureon: long‐acting exenatide for once‐weekly injection. Prescriber. 2012;23(1–2):30–3.

    Article  Google Scholar 

  8. Harrison TS, Goa KL. Long-acting risperidone. CNS Drugs. 2004;18(2):113–32.

    Article  CAS  PubMed  Google Scholar 

  9. Syed YY, Keating GM. Extended-release intramuscular naltrexone (VIVITROL®): a review of its use in the prevention of relapse to opioid dependence in detoxified patients. CNS Drugs. 2013;27(10):851–61.

    Article  CAS  PubMed  Google Scholar 

  10. Stone GW, Teirstein PS, Meredith IT, Farah B, Dubois CL, Feldman RL, et al. A prospective, randomized evaluation of a novel everolimus-eluting coronary stent: the PLATINUM workhorse trial. J Am Coll Cardiol. 2011;57(16):1700–8.

    Article  CAS  PubMed  Google Scholar 

  11. Perry J, Chambers A, Spithoff K, Laperriere N. Gliadel® wafers in the treatment of malignant glioma: a systematic review. Curr Oncol. 2007;14(5):189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.

    Article  CAS  PubMed  Google Scholar 

  13. Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012;4(128):128ra39.

    Article  PubMed  Google Scholar 

  14. Gaddy DF, Lee H, Zheng J, Jaffray DA, Wickham TJ, Hendriks BS. Whole-body organ-level and kidney micro-dosimetric evaluations of 64Cu-loaded HER2/ErbB2-targeted liposomal doxorubicin (64Cu-MM-302) in rodents and primates. EJNMMI Res. 2015;5(1):24.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Capdeville R, Buchdunger E, Zimmermann J, Matter A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov. 2002;1(7):493–502.

    Article  CAS  PubMed  Google Scholar 

  16. Baselga J, Albanell J. Targeting epidermal growth factor receptor in lung cancer. Curr Oncol Rep. 2002;4(4):317–24.

    Article  PubMed  Google Scholar 

  17. Ashton S, Song YH, Nolan J, Cadogan E, Murray J, Odedra R, et al. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci Transl Med. 2016;8(325):325ra17.

    Article  PubMed  Google Scholar 

  18. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.

    CAS  PubMed  Google Scholar 

  19. Kulkarni SA, Feng SS. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res. 2013;30:2512–22.

    Article  CAS  PubMed  Google Scholar 

  20. Maresca KP, Hillier SM, Femia FJ, Keith D, Barone C, Joyal JL, et al. A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J Med Chem. 2009;52:347–57.

    Article  CAS  PubMed  Google Scholar 

  21. Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999;59:3192–8.

    CAS  PubMed  Google Scholar 

  22. ICH Harmonised Tripartite Guideline: Pharmaceutical Development Q8(R2); ICH Harmonised Tripartite Guideline: Quality Risk Management Q9; ICH Harmonised Tripartite Guideline: Pharmaceutical Quality System Q10.

  23. Product development and realisation case study A-Mab, ISPE CMC Biotech Working Group, 2009.

  24. Luciani F, Galluzzo S, Gaggioli A, Kruse NA, Venneugues P, Schneider CK, et al. MAbs. 2015;7(3):451–5. doi:10.1080/19420862.2015.1023058. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, et al. AAPS J. 2014;16(4):771–83. doi:10.1208/s12248-014-9598-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roudier B, Davit B, Schütz H, Cardot JM. AAPS J. 2015;17(1):24–34. doi:10.1208/s12248-014-9680-x.

    Article  CAS  PubMed  Google Scholar 

  27. Sihem A-O. Application of pharmacokinetic and pharmacodynamic analysis to the development of liposomal formulations for oncology. Pharmaceutics. 2014;6:137–74.

    Article  Google Scholar 

  28. Song YH, Shin E, Wang NJ, Low S, Zale S. A novel in situ hydrophobic ion paring (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system. J Control Release. 2016;229:106–19.

    Article  CAS  PubMed  Google Scholar 

  29. Online Size analysis of nanoparticles | Particle sizing systems http://pssnicomp.com/?page_id=2543

  30. CMC Biotech Working Group. A-Mab: a case study in bioprocess development. October 30, 2009. Available at: www.ispe.org/pqli/a-mab-case-study-version-2.1.

  31. Troiano G, Parsons D, Van Geen Hoven C, Tuller S, Dey J, Brigida L. Selecting and working with CMOs for complex formulations and processes. Pharmaceut Outsour. 2015. Available at: www.pharmoutsourcing.com/Featured-Articles/178208-Selecting-and-Working-with-CMOs-for-Complex-Formulations-and-Processes/.

  32. Liposome drug products guidance for industry, FDA 2015.

  33. Peraman R, Bhadraya K, Padmanabha Reddy Y. Analytical quality by design: a tool for regulatory flexibility and robust analytics. Int J Anal Chem. 2015;(2015);article ID no. 868727:9 pages.

Download references

Acknowledgments

We would like to thank Liza Andrianova, Laura Beaudoin, Nicholas Boylan, Jeff Boyle, Lia Brigida, Louise Cadzow, Vicki Campbell, Jessica Cheney, Jagannath Dey, Mike Figa, Allen Horhota, Susan Low, Eric Lewis-Clark, Allison MacRae, Kevin McDonnell, Erick Peeke, Beadle Retnarajan, Abhimanyu Sabnis, Jeffrey Song, Young-Ho Song, Grace Yao, and Jonathan Yingling for the helpful scientific discussion, technical support, and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Troiano.

Additional information

Guest Editors: Katherine Tyner, Sau (Larry) Lee, and Marc Wolfgang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troiano, G., Nolan, J., Parsons, D. et al. A Quality by Design Approach to Developing and Manufacturing Polymeric Nanoparticle Drug Products. AAPS J 18, 1354–1365 (2016). https://doi.org/10.1208/s12248-016-9969-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9969-z

KEYWORDS

Navigation