Skip to main content
Log in

Pharmacodynamic Model of Hepcidin Regulation of Iron Homeostasis in Cynomolgus Monkeys

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Hepcidin (H25) is a hormone peptide synthesized by the liver that binds to ferroportin and blocks iron export. In this study, H25 was inhibited by administration of single and multiple doses of an anti-H25 monoclonal antibody Ab 12B9m in cynomolgus monkeys. The objective of this analysis was to develop a pharmacodynamic model describing the role of H25 in regulating iron homeostasis and the impact of hepcidin inhibition by Ab 12B9m. Total serum H25 and Ab 12B9m were determined in each animal. Corresponding measurements of serum iron and hemoglobin (Hb) were obtained. The PD model consisted of iron pools in serum (FeS), reticuloendothelial macrophages (FeM), hemoglobin (FeHb), and liver (FeL). The iron was assumed to be transported between the FeS, FeHb, and FeM unidirectionally at rates k S, k Hb, and k M. H25 serum concentrations were described by the previously developed PK model with the parameters fixed at their estimates. The serum iron and Hb data were fitted simultaneously. The corresponding estimates of the rate constants were k S/Fe0 = 0.113 h−1, k M = 0.00191 h−1, and k Hb = 0.00817 h−1. The model-based IC50 value for the H25 inhibitory effect on ferroportin activity was 0.398 nM. The PD model predicted a negligible effect of Ab 12B9m on Hb levels for the tested doses. The presented PD model adequately described the serum iron time courses following single and multiple doses of Ab 12B9m. Ab 12B9m-induced inhibition of H25 resulted in a temporal increase in serum and liver iron and a decrease in the iron stored in reticuloendothelial macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andrews NC. Disorders of iron metabolism. N Eng J Med. 1999;341:1986–95.

    Article  CAS  Google Scholar 

  2. Ganz T. Molecular control of iron transport. J Am Soc Nephrol. 2007;18:394–400.

    Article  CAS  PubMed  Google Scholar 

  3. Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood. 2005;106:1864–6.

    Article  CAS  PubMed  Google Scholar 

  4. Sun CC, Vaja V, Babitt JL, Lin HY. Targeting the hepcidin–ferroportin axis to develop new treatment strategies for anemia of chronic disease and anemia of inflammation. Am J Hematol. 2012;87:392–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cooke KS, Hinkle B, Salimi-Moosavi H, Foltz I, King C, Rathanaswami P, et al. A fully human anti-hepcidin antibody modulates iron metabolism in both mice and nonhuman primates. Blood. 2013;122:3054–61.

    Article  CAS  PubMed  Google Scholar 

  6. Xiao JJ, Krzyzanski W, Wang Y-M, Li H, Rose MJ, Ma M, et al. Pharmacokinetics of anti-hepcidin monoclonal antibody Ab 12B9m and hepcidin in cynomolgus monkeys. AAPS J. 2010;12:646–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McCance RA, Widdowson EM. Absorption and excretion of iron. Lancet. 1937;230:680–4.

    Article  Google Scholar 

  8. Nooney GC. An erythron-dependent model of iron kinetics. Biophys J. 1966;6:601–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ricketts C, Jacobs A, Cavill I. Ferrokinetics and erythropoiesis in man: the measurement of effective erythropoiesis, ineffective erythropoiesis and red cell lifespan using 59Fe. Br J Haematol. 1975;31:65–75.

    Article  CAS  PubMed  Google Scholar 

  10. Stefanelli M, Bentley DP, Cavill I, Roeser HP. Quantitation of reticuloendothelial iron kinetics in humans. Am J Physiol Regul Integr Comp Physiol. 1984;247:842–9.

    Google Scholar 

  11. Lopes TJS, Luganskaja T, Spasic MV, Hentze MW, Mutzkenthaler MU, Schumann K, et al. System analysis of iron metabolism: the network of iron pools and fluxes. BMC Syst Biol. 2010;4:112.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hosain F, Marsaglia G, Finch CA. Blood ferrokinetics in normal man. J Clin Invest. 1967;46:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cook JD, Marsaglia G, Eschbach JW, Funk DD, Finch CA. Ferrokinetics: a biologic model for plasma iron exchange in man. J Clin Invest. 1970;49:197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fillet G, Beguin Y, Baldelli L. Model of reticuloendothelial iron metabolismin humans: abnormal behavior in idiopathic hemochromatosis and inflammation. Blood. 1989;74:844–51.

    CAS  PubMed  Google Scholar 

  15. National Research Council of the National Academies. Guide for the care and use of laboratory animals. 8th ed. Washington DC: The National Academies Press; 2011.

    Google Scholar 

  16. D’Argenio DZ, Schumitzky A, Wang X. ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Los Angeles: Biomedical Simulations Resource; 2009.

    Google Scholar 

  17. Landaw SA. Factors that accelerate or retard red blood cell senescence. Blood Cells. 1988;14:47–59.

    CAS  PubMed  Google Scholar 

  18. Bucher NLR, Malt RA. Regeneration of liver and kidney. Boston: Little Brown; 1971.

    Google Scholar 

  19. Gonzalez-Mejia ME, Doseff AI. Regulation of monocytes and macrophages cell fate. Front Biosci. 2009;14:2413–31.

    Article  CAS  Google Scholar 

  20. Burwell EL, Brickley BA, Finch CA. Erythrocyte life span in small animals; comparison of two methods employing radioiron. Am J Physiol. 1953;172:718–24.

    CAS  PubMed  Google Scholar 

  21. Gaweda AE, Ginzburg YZ, Chait Y, Germain MJ, Aronoff GR, Rachmilewitz E. Iron dosing in kidney disease: inconsistency of evidence and clinical practice. Nephrol Dial Transplant. 2015;30:187–96.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nathanson MH, McLaren GD. Computer simulation of iron absorption: regulation of mucosal and systemic iron kinetics in dogs. J Nutr. 1987;117:1067–75.

    CAS  PubMed  Google Scholar 

  23. Sharma A, Ebling W, Jusko WJ. Precursor-dependent indirect pharmacodynamic response model for tolerance and rebound phenomena. J Pharm Sci. 1998;87:1577–84.

    Article  CAS  PubMed  Google Scholar 

  24. Ramakrishnan R, Cheung WK, Farrell F, Kelley M, Jolliffe L, Jusko WJ. Pharmacokinetic and phramacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous single dose administrations in cynomolgus monkeys. J Pharmacol Exp Ther. 2003;306:324–31.

    Article  CAS  PubMed  Google Scholar 

  25. Krzyzanski W, Jusko WJ, Wacholtz MC, Minton N, Cheung WK. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after multiple subcutaneous doses in healthy subjects. Eur J Pharm Sci. 2005;26:295–306.

    Article  CAS  PubMed  Google Scholar 

  26. Woo S, Krzyzanski W, Jusko WJ. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous administration in rats. J Pharmacol Exp Ther. 2006;319:1297–306.

    Article  CAS  PubMed  Google Scholar 

  27. Pérez-Ruixo JJ, Krzyzanski W, Hing J. Pharmacodynamic analysis of recombinant human erythropoietin effect on reticulocyte production rate and age distribution in healthy subjects. Clin Pharmacokinet. 2008;47:399–415.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pérez-Ruixo JJ, Krzyzanski W, Bouman-Thio E, Miller B, Jang H, Bai SA, et al. Pharmacokinetics and pharmacodynamics of the erythropoietin mimetibody construct CNTO 528 in healthy subjects. Clin Pharmacokinet. 2009;48:601–13.

    Article  PubMed  Google Scholar 

  29. Andrews NC. Iron deficiency and related disorders. In: Greer JP, Foerster J, Luken JN, Roders GM, Paraskevanos F, Glader B, editors. Wintrobe’s clinical hematology, vol. I. 11th ed. Philadelphia: Lippincott Williams & Wilkins; 2004.

    Google Scholar 

  30. Doshi S, Krzyzanski W, Yue S, Elliott S, Chow A, Pérez-Ruixo JJ. Clinical pharmacokinetics and pharmacodynamics of erythropoiesis-stimulating agents. Clin Pharmacokinet. 2013;52:1063–83.

    Article  CAS  PubMed  Google Scholar 

  31. Ashby DR, Gale DP, Busbridge M, Murphy KG, Duncan ND, Cairns TD, et al. Erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin. Haematologica. 2010;95:505–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352:1011–23.

    Article  CAS  PubMed  Google Scholar 

  33. Goodnough LT, Nemeth E, Ganz T. Detection, evaluation, and management of iron-restricted erythropoiesis. Blood. 2010;116:4754–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Krzyzanski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 243 kb)

APPENDIX

APPENDIX

PK model of anti-hepcidin monoclonal antibody Ab 12B9m.

The PK model description for Ab 12B9m has been excerpted from the original publication Xiao et al. (6). A schematic of the PK model is shown in Fig. 10. Absc represents the SC depot for Ab 12B9m SC dosing. Ab 12B9m and Ab 12B9m-H25 complex distribute into their central compartments (Ab and AbH), peripheral compartments (Abp and AbHp), and endosome compartments (AbE and AbHE). In endosome, Ab 12B9m and Ab 12B9m-H25 complex binds to FcRn to form complexes (FcAbE and FcAbHE). The intercompartment distribution was described with a set of first-order rate constants (k cp, k pc, k up, and k R), and elimination from Ab and AbH follows first-order kinetics (k). It was assumed that Ab 12B9m and Ab 12B9m-H25 complex share the same parameter as listed above. H25 is produced at a constant rate (k inH) and eliminated with first-order kinetics (k H). In serum, the binding between Ab 12B9m and H25 is governed by the association rate constant (k onH) and the dissociation rate constant (k offH); similarly, in endosome the binding of Ab 12B9m and Ab 12B9m-H25 complex to FcRn is described by k onA and k offA.

$$ \frac{d{\mathrm{Ab}}_{\mathrm{SC}}}{dt}=-F\cdot {k}_{\mathrm{a}}\cdot {A}_{\mathrm{SC}} $$
(11)
$$ \begin{array}{l}\frac{d\mathrm{Ab}}{dt}=F\cdot {k}_{\mathrm{a}}\cdot {A}_{\mathrm{SC}}-\left(k+{k}_{\mathrm{up}}+{k}_{\mathrm{c}\mathrm{p}}\right)\cdot \mathrm{Ab}-{k}_{\mathrm{onH}}\cdot {\mathrm{H}}_{25}\cdot \mathrm{Ab}/{V}_{\mathrm{c}}+{k}_{\mathrm{offH}}\cdot \mathrm{A}\mathrm{b}\mathrm{H}\\ {}+{k}_{\mathrm{R}}\cdot {\mathrm{FcAb}}_{\mathrm{E}}+{k}_{\mathrm{p}\mathrm{c}}\cdot {\mathrm{Ab}}_{\mathrm{p}}\end{array} $$
(12)
$$ \frac{d{\mathrm{Ab}}_{\mathrm{p}}}{dt}={k}_{\mathrm{cp}}\cdot \mathrm{Ab}-{k}_{\mathrm{p}\mathrm{c}}\cdot {\mathrm{Ab}}_{\mathrm{p}} $$
(13)
$$ \frac{d{\mathrm{H}}_{25}}{dt}={k}_{\mathrm{inH}}-{k}_{\mathrm{H}}\cdot {H}_{25}-{k}_{\mathrm{onH}}\cdot {\mathrm{H}}_{25}\cdot {A}_{\mathrm{b}}/{V}_{\mathrm{c}}+{k}_{\mathrm{offH}}\cdot \mathrm{A}\mathrm{b}\mathrm{H} $$
(14)
$$ \frac{d\mathrm{A}\mathrm{b}\mathrm{H}}{dt}={k}_{\mathrm{onH}}\cdot {\mathrm{H}}_{25}\cdot \mathrm{Ab}/{V}_{\mathrm{c}}-\left({k}_{\mathrm{offH}}+k+{k}_{\mathrm{up}}+{k}_{\mathrm{c}\mathrm{p}}\right)\cdot \mathrm{A}\mathrm{b}\mathrm{H}+{k}_{\mathrm{p}\mathrm{c}}\cdot {\mathrm{AbH}}_{\mathrm{p}}+{k}_{\mathrm{R}}\cdot {\mathrm{FcAbH}}_{\mathrm{E}} $$
(15)
$$ \frac{d{\mathrm{AbH}}_{\mathrm{p}}}{dt}={k}_{\mathrm{cp}}\cdot \mathrm{A}\mathrm{b}\mathrm{H}-{k}_{\mathrm{p}\mathrm{c}}\cdot {\mathrm{AbH}}_{\mathrm{p}} $$
(16)
$$ \frac{d{\mathrm{Ab}}_{\mathrm{E}\mathrm{tot}}}{dt}={k}_{\mathrm{up}}\cdot \mathrm{Ab}-{k}_{\deg}\cdot {\mathrm{Ab}}_{\mathrm{E}}-{k}_{\mathrm{R}}\cdot {\mathrm{FcAb}}_{\mathrm{E}} $$
(17)
$$ \frac{d{\mathrm{AbH}}_{\mathrm{E}\mathrm{tot}}}{dt}={k}_{\mathrm{up}}\cdot \mathrm{A}\mathrm{b}\mathrm{H}-{k}_{\deg}\cdot {\mathrm{AbH}}_{\mathrm{E}}-{k}_{\mathrm{R}}\cdot {\mathrm{FcAbH}}_{\mathrm{E}} $$
(18)

where V c denotes the central compartment volume of Ab 12B9m, which was assumed to be the same for hepcidin H25 and the Ab 12B9m-H25 complex; AbEtot and AbHEtot are the total amounts, respectively, of Ab 12B9m and Ab 12B9m-H25 in the endosomal compartments:

$$ {\mathrm{Ab}}_{\mathrm{E}\mathrm{tot}}={\mathrm{Ab}}_{\mathrm{E}}+{\mathrm{FcAb}}_{\mathrm{E}} $$
(19a)

and

$$ {\mathrm{AbH}}_{\mathrm{E}\mathrm{tot}}={\mathrm{AbH}}_{\mathrm{E}}+{\mathrm{FcAbH}}_{\mathrm{E}} $$
(19b)
Fig. 10
figure 10

Schematic of pharmacokinetic model for H25 and Ab 12B9m in cynomolgus monkeys

The free and bound endosomal antibodies were calculated according to the equilibrium assumption:

$$ {\mathrm{Ab}}_{\mathrm{E}}=\frac{{\mathrm{Ab}}_{\mathrm{E}\mathrm{tot}}\cdot \left({K}_{\mathrm{DA}}\cdot {V}_{\mathrm{E}}+{\mathrm{Ab}}_{\mathrm{E}}+{\mathrm{Ab}\mathrm{H}}_{\mathrm{E}}\right)}{K_{\mathrm{DA}}\cdot {V}_{\mathrm{E}}+{\mathrm{Fc}}_{\mathrm{tot}}+{\mathrm{Ab}}_E+{\mathrm{Ab}\mathrm{H}}_{\mathrm{E}}} $$
(20)

and

$$ {\mathrm{Ab}\mathrm{H}}_{\mathrm{E}}=\frac{{\mathrm{Ab}\mathrm{H}}_{\mathrm{E}\mathrm{tot}}\cdot \left({K}_{\mathrm{DA}}\cdot {V}_{\mathrm{E}}+{\mathrm{Ab}}_{\mathrm{E}}+{\mathrm{Ab}\mathrm{H}}_{\mathrm{E}}\right)}{K_{\mathrm{DA}}\cdot {V}_{\mathrm{E}}+{\mathrm{Fc}}_{\mathrm{tot}}+{\mathrm{Ab}}_{\mathrm{E}}+{\mathrm{Ab}\mathrm{H}}_{\mathrm{E}}} $$
(21)

where

$$ \begin{array}{l}{\mathrm{Ab}}_{\mathrm{E}}+{\mathrm{Ab}\mathrm{H}}_{\mathrm{E}}=\frac{1}{2}\left({\mathrm{Ab}}_{\mathrm{E}\mathrm{tot}}+{\mathrm{Ab}\mathrm{H}}_{\mathrm{E}\mathrm{tot}}-{K}_{\mathrm{DA}}\cdot {V}_{\mathrm{E}}-{\mathrm{Fc}}_{\mathrm{tot}}\right)\\ {}+\frac{1}{2}\sqrt{{\left({\mathrm{Ab}}_{\mathrm{E}\mathrm{tot}}+{\mathrm{Ab}\mathrm{H}}_{\mathrm{E}\mathrm{tot}}-{K}_{\mathrm{DA}}\cdot {V}_{\mathrm{E}}-{\mathrm{Fc}}_{\mathrm{tot}}\right)}^2+4\cdot \left({\mathrm{Ab}}_{\mathrm{E}\mathrm{tot}}+{\mathrm{Ab}\mathrm{H}}_{\mathrm{E}\mathrm{tot}}\right)\cdot {K}_{\mathrm{DA}}\cdot {V}_{\mathrm{E}}}\end{array} $$
(22)
$$ {\mathrm{Fc}\mathrm{Ab}}_{\mathrm{E}}=\frac{{\mathrm{Fc}}_{\mathrm{tot}}\cdot {\mathrm{Ab}}_{\mathrm{E}}}{K_{\mathrm{DA}}\cdot {V}_{\mathrm{E}}+{\mathrm{Ab}}_{\mathrm{E}}+{\mathrm{Ab}\mathrm{H}}_{\mathrm{E}}} $$
(23)
$$ {\mathrm{Fc}\mathrm{AbH}}_{\mathrm{E}}=\frac{{\mathrm{Fc}}_{\mathrm{tot}}\cdot {\mathrm{Ab}\mathrm{H}}_{\mathrm{E}}}{K_{\mathrm{DA}}\cdot {V}_{\mathrm{E}}+{\mathrm{Ab}}_{\mathrm{E}}+{\mathrm{Ab}\mathrm{H}}_{\mathrm{E}}} $$
(24)

The initial conditions for the model variables were zero except for AbSC, Ab, and H25. The initial values of AbSC and Ab were the first doses administered SC or IV, whereas the initial value for H25 was the baseline H25 serum amount H25,0. The steady state for Eq. 12 resulted in the following baseline equation:

$$ {k}_{\mathrm{inH}}={k}_{\mathrm{H}}\cdot {H}_{25,0} $$
(25)

The linear disposition parameters for Ab 12B9m were re-parameterized in terms of clearances and volumes:

$$ k=\frac{\mathrm{CL}}{V_{\mathrm{c}}} $$
(26)

and

$$ {k}_{\mathrm{c}\mathrm{p}}=\frac{Q}{V_{\mathrm{c}}} $$
(27a)

and

$$ {k}_{\mathrm{p}\mathrm{c}}=\frac{Q}{V_{\mathrm{p}}} $$
(27b)

where Q denotes the distributional clearance and V p is the volume of the peripheral compartment. Total Ab 12B9m and total H25 serum concentrations were expressed as

$$ {C}_{\mathrm{Ab}\mathrm{tot}}=\frac{\mathrm{Ab}+\mathrm{A}\mathrm{b}\mathrm{H}}{V_{\mathrm{c}}} $$
(28a)

and

$$ {C}_{\mathrm{H}\mathrm{tot}}=\frac{{\mathrm{H}}_{25}+\mathrm{A}\mathrm{b}\mathrm{H}}{V_{\mathrm{c}}} $$
(28b)

The serum free hepcidin concentrations were calculated as

$$ {C}_{\mathrm{H}25}=\frac{{\mathrm{H}}_{25}}{V_{\mathrm{c}}} $$
(29)

The values of the PK parameters are presented in Table III.

Table III Parameter Estimates for the PK Model of Anti-hepcidin Monoclonal Antibody Ab 12B9m Obtained from (6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krzyzanski, W., Xiao, J.J., Sasu, B. et al. Pharmacodynamic Model of Hepcidin Regulation of Iron Homeostasis in Cynomolgus Monkeys. AAPS J 18, 713–727 (2016). https://doi.org/10.1208/s12248-016-9886-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9886-1

KEY WORDS

Navigation