Skip to main content

Advertisement

Log in

Antibody Drug Conjugates: Preclinical Considerations

  • Review Article
  • Theme: Critical Considerations for Design and Development of Antibody Drug Conjugates
  • Published:
The AAPS Journal Aims and scope Submit manuscript

ABSTRACT

The development path for antibody drug conjugates (ADCs) is more complex and challenging than for unmodified antibodies. While many of the preclinical considerations for both unmodified and antibody drug conjugates are shared, special considerations must be taken into account when developing an ADC. Unlike unmodified antibodies, an ADC must preferentially bind to tumor cells, internalize, and traffic to the appropriate intracellular compartment to release the payload. Parameters that can impact the pharmacological properties of this class of therapeutics include the selection of the payload, the type of linker, and the methodology for payload drug conjugation. Despite a plethora of in vitro assays and in vivo models to screen and evaluate ADCs, the challenge remains to develop improved preclinical tools that will be more predictive of clinical outcome. This review will focus on preclinical considerations for clinically validated small molecule ADCs. In addition, the lessons learned from Mylotarg®, the first in class FDA-approved ADC, are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Decarvalho S, Rand HJ, Lewis A. Coupling of cyclic chemotherapeutic compounds to immune gamma-globulins. Nature. 1964;202:255–8.

    CAS  PubMed  Google Scholar 

  2. Mullard A. Maturing antibody-drug conjugate pipeline hits 30. Nat Rev Drug Discov. 2013;12(5):329–32.

    CAS  PubMed  Google Scholar 

  3. Zheng B, Fuji RN, Elkins K, et al. In vivo effects of targeting CD79b with antibodies and antibody-drug conjugates. Mol Cancer Ther. 2009;8(10):2937–46.

    CAS  PubMed  Google Scholar 

  4. Graversen JH, Svendsen P, Dagnaes-Hansen F, et al. Targeting the hemoglobin scavenger receptor CD163 in macrophages highly increases the anti-inflammatory potency of dexamethasone. Mol Ther. 2012;20(8):1550–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Gerber HP, Senter PD, Grewal IS. Antibody drug-conjugates targeting the tumor vasculature: current and future developments. MAbs. 2009;1(3):247–53.

    PubMed Central  PubMed  Google Scholar 

  6. Sassoon I, Blanc V. Antibody-drug conjugate (ADC) clinical pipeline: a review. Methods Mol Biol. 2013;1045:1–27.

    PubMed  Google Scholar 

  7. Bander NH. Antibody-drug conjugate target selection: critical factors. Methods Mol Biol. 2013;1045:29–40.

    PubMed  Google Scholar 

  8. Baselga J, Verma S, Ro J, et al. Relationship between tumor biomarkers and efficacy in EMILIA, a phase III study of trastuzumab emtansine (T-DM1) in HER2-positive metastatic breast cancer. Cancer Res. 2013;73(8):LB–63.

    Google Scholar 

  9. Perez HL, Cardarelli PM, Deshpande S, et al. Antibody-drug conjugates: current status and future directions. Drug Discov Today. 2014;19(7):869–81.

    CAS  PubMed  Google Scholar 

  10. Press MF et al. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene. 1990;5:953–62.

    CAS  PubMed  Google Scholar 

  11. Solal-Celligny P. Safety of rituximab maintenance therapy in follicular lymphomas. Leuk Res. 2006;30 Suppl 1:S16–21.

    Google Scholar 

  12. Wahl AF, Klussman K, Thompson JD, et al. The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin’s disease. Cancer Res. 2002;62:3736–42.

    CAS  PubMed  Google Scholar 

  13. Stein H, Foss HD, Durkop H, et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96:3681–95.

    CAS  PubMed  Google Scholar 

  14. Falini B, Pileri S, Pizzolo G, et al. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood. 1995;85:1–14.

    CAS  PubMed  Google Scholar 

  15. Chari RVJ. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008;41:98–107.

    CAS  PubMed  Google Scholar 

  16. Doronina SO, Toki BE, Torgov MY, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol. 2003;21(7):778–84.

    CAS  PubMed  Google Scholar 

  17. Teicher BA. Antibody-drug conjugate targets. Curr Cancer Drug Targets. 2009;9(8):982–1004.

    CAS  PubMed  Google Scholar 

  18. Carter P, Smith L, Ryan M. Identification and validation of cell surface antigens for antibody targeting in oncology. Endocrinol Relat Cancer. 2004;11(4):659–87.

    CAS  Google Scholar 

  19. Firer MA. Antibody-drug conjugates in cancer therapy—filling in the potholes that lie ahead. OA Cancer. 2013;1(1):8.

    Google Scholar 

  20. Alley SC, Zhang X, Okeley NM, et al. The pharmacologic basis for antibody-auristatin conjugate activity. J Pharmacol Exp Ther. 2009;330(3):932–8.

    CAS  PubMed  Google Scholar 

  21. Thurber GM, Schmidt MM, Wittrup KD, et al. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev. 2008;60:1421–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Sievers EL, Senter PD. Antibody-drug conjugates in cancer therapy. Annu Rev Med. 2013;64:15–29.

    CAS  PubMed  Google Scholar 

  23. Law CL, Cerveny CG, Gordon KA, et al. Efficient elimination of B-lineage lymphomas by anti-CD20-auristatin conjugates. Clin Cancer Res. 2004;10:7842–51.

    CAS  PubMed  Google Scholar 

  24. Smith LM, Nesterova A, Alley SC, Torgov MY, Carter PJ. Potent cytotoxicity of an auristatin-containing antibody-drug conjugate targeting melanoma cells expressing melanotransferrin/p97. Mol Cancer Ther. 2006;5:1474–82.

    CAS  PubMed  Google Scholar 

  25. Yoshikawa M, Mukai Y, Okada Y, et al. Robo4 is an effective tumor endothelial marker for antibody-drug conjugates based on the rapid isolation of the anti-Robo4 cell-internalizing antibody. Blood. 2013;121:2804–13.

    CAS  PubMed  Google Scholar 

  26. Ackerman ME, Pawlowski D, Wittrup KD, et al. Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol Cancer Ther. 2008;7(7):2233–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol. 2006;6:343–57.

    CAS  PubMed  Google Scholar 

  28. Owen SC, Patel N, Logie J, et al. Targeting HER2+ breast cancer cells: lysosomal accumulation of anti-HER2 antibodies is influenced by antibody binding site and conjugation to polymeric nanoparticles. J Control Release. 2013;172(2):395–404.

    CAS  PubMed  Google Scholar 

  29. Rudnick SI, Lou J, Shaller CC, et al. Influence of affinity and antigen internalization on the uptake and penetration of anti-HER2 antibodies in solid tumors. Cancer Res. 2011;71(6):2250–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Flygare JA, Pillow TH, Aristoff P. Antibody-drug conjugates for the treatment of cancer. Chem Biol Des. 2013;81:113–21.

    CAS  Google Scholar 

  31. Henry MD, Wen S, Silva MD, et al. A prostate-specific membrane antigen-targeted monoclonal antibody-chemotherapeutic conjugate designed for the treatment of prostate cancer. Cancer Res. 2004;64(21):7995–8001.

    CAS  PubMed  Google Scholar 

  32. Legrand O. An open label dose escalation study of AVE9633 administered as a single agent by intravenous (IV) infusion weekly for 2 weeks in 4-week cycle to patients with relapsed or refractory CD33-positive acute myeloid leukemia (AML). Blood. 2007;110:1850.

    Google Scholar 

  33. Polson AG, Calemine-Fenaux J, Chan P, et al. Antibody-drug conjugates for the treatment of non-Hodgkin’s lymphoma: target and linker-drug selection. Cancer Res. 2009;69(6):2358–64.

    CAS  PubMed  Google Scholar 

  34. Tassone P, Goldmacher VS, Neri P, et al. Cytotoxic activity of the maytansinoid immunoconjugate B-B4-DM1 against CD138+ multiple myeloma cells. Blood. 2004;104(12):3688–96.

    CAS  PubMed  Google Scholar 

  35. Tassone P, Gozzini A, Goldmacher VS, et al. In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2’-deacetyl-N2’-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res. 2004;64(13):4629–36.

    CAS  PubMed  Google Scholar 

  36. Lewis Phillips GD, Li G, Dugger DL, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68(22):9280–90.

    CAS  PubMed  Google Scholar 

  37. Katz J, Janik JE, Younes A. Brentuximab vedotin (SGN-35). Clin Cancer Res. 2011;17:6428–36.

    CAS  PubMed  Google Scholar 

  38. Kovtun YV, Goldmacher VS. Cell killing by antibody-drug conjugates. Cancer Lett. 2007;255(2):232–40.

    CAS  PubMed  Google Scholar 

  39. Hamann PR, Hinman LM, Hollander I, et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem. 2002;13(1):47–58.

    CAS  PubMed  Google Scholar 

  40. Hamann PR, Hinman LM, Beyer CF, et al. An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug Chem. 2002;13(1):40–6.

    CAS  PubMed  Google Scholar 

  41. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov. 2009;8:806–23.

    CAS  PubMed  Google Scholar 

  42. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.

    CAS  PubMed  Google Scholar 

  43. Frankfurt OS, Greco WR, Slocum HK, et al. Proliferative characteristics of primary and metastatic human solid tumors by DNA flow cytometry. Cytometry. 1984;5(6):629–35.

    CAS  PubMed  Google Scholar 

  44. Friberg S, Mattson SJ. On the growth rates of human malignant tumors: implications for medical decision making. Surg Oncol. 1997;65(4):284–97.

    CAS  Google Scholar 

  45. Hlatky L, Olesiak M, Hahnfeldt P. Measurement of potential doubling time for human tumor xenografts using the cytokinesis-block method. Cancer Res. 1996;56:1660–3.

    CAS  PubMed  Google Scholar 

  46. DiJoseph JF, Armellino DC, Boghaert ER, et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004;103(5):1807–14.

    CAS  PubMed  Google Scholar 

  47. Boghaert ER, Sridharan L, Khandke KM, et al. The oncofetal protein, 5T4, is a suitable target for antibody-guided anti-cancer chemotherapy with calicheamicin. Int J Oncol. 2008;32(1):221–34.

    CAS  PubMed  Google Scholar 

  48. Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–6.

    CAS  PubMed  Google Scholar 

  49. Kantarjian H, Thomas D, Jorgensen J, et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 2012;13(4):403–11.

    CAS  PubMed  Google Scholar 

  50. Senter PD. Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol. 2009;13(3):235–44.

    CAS  PubMed  Google Scholar 

  51. Kaneko T, Willner D, Monkovic I, et al. New hydrazone derivatives of adriamycin and their immunoconjugates—a correlation between acid stability and cytotoxicity. Bioconjug Chem. 1991;2(3):133–41.

    CAS  PubMed  Google Scholar 

  52. Ducry L, Stump B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem. 2010;21(1):5–13.

    CAS  PubMed  Google Scholar 

  53. Toki BE, Cerveny CG, Wahl AF, Senter PD. Protease-mediated fragmentation of p-amidobenzyl ethers: a new strategy for the activation of anticancer prodrugs. J Org Chem. 2002;67(6):1866–72.

    CAS  PubMed  Google Scholar 

  54. Dubowchik GM, Radia S, Mastalerz H, et al. Doxorubicin immunoconjugates containing bivalent, lysosomally-cleavable dipeptide linkages. Bioorg Med Chem Lett. 2002;12(11):1529–32.

    CAS  PubMed  Google Scholar 

  55. Polakis P. Arming antibodies for cancer therapy. Curr Opin Pharmacol. 2005;5(4):382–7.

    CAS  PubMed  Google Scholar 

  56. Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005;23(9):1137–46.

    CAS  PubMed  Google Scholar 

  57. KovtunYV, Audette CA, Ye Y, et al. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 66(6):3214–21.

  58. Erickson HK, Widdison WC, Mayo MF, et al. Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody-maytansinoid conjugates. Bioconjug Chem. 2010;21:84–92.

    CAS  PubMed  Google Scholar 

  59. Okeley NM, Miyamaoto JB, Zhang X, et al. Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin Cancer Res. 2010;16:888–97.

    CAS  PubMed  Google Scholar 

  60. Flygare JA, Pillow TH, Aristoff P. Antibody-drug conjugates for the treatment of cancer. Chem Biol Drug Des. 2013;81:113–21.

    CAS  PubMed  Google Scholar 

  61. Sanderson RJ, Hering MA, James SF, et al. In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res. 2005;11:843–52.

    CAS  PubMed  Google Scholar 

  62. McDonagh CF, Turcott E, Westendorf L, et al. Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel. 2006;19(7):299–307.

    CAS  PubMed  Google Scholar 

  63. Hamblett KJ, Senter PD, Chace DF, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10(20):7063–70.

    CAS  PubMed  Google Scholar 

  64. Strop P, Liu SH, Dorywalska M, et al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol. 2013;20(2):161–7.

    CAS  PubMed  Google Scholar 

  65. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol. 2005;23:1147–57.

    CAS  PubMed  Google Scholar 

  66. Lewis GD, Figari I, Fendly B, et al. Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol Immunother. 1993;37(4):255–63.

    CAS  PubMed  Google Scholar 

  67. Junttila TT, Li G, Parsons K, et al. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat. 2011;128(2):347–56.

    CAS  PubMed  Google Scholar 

  68. Linenberger ML, Hong T, Flowers D, et al. Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin. Blood. 2001;98(4):988–94.

    CAS  PubMed  Google Scholar 

  69. Linenberger ML. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia. 2005;19(2):176–82.

    CAS  PubMed  Google Scholar 

  70. Walter RB, Gooley TA, van der Velden VH, et al. CD33 expression and P-glycoprotein-mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood. 2007;109(10):4168–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Tang R, Cohen S, Perrot JY, et al. P-gp activity is a critical resistance factor against AVE9633 and DM4 cytotoxicity in leukaemia cell lines, but not a major mechanism of chemoresistance in cells from acute myeloid leukaemia patients. BMC Cancer. 2009;9:199.

    PubMed Central  PubMed  Google Scholar 

  72. Kovtun YV, Audette CA, Mayo MF, et al. Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res. 2010;70(6):2528–37.

    CAS  PubMed  Google Scholar 

  73. Espenetos AA, Snook D, Durbin H, et al. Limitations of radiolabeled monoclonal antibodies for localization of human neoplasms. Cancer Res. 1986;46(6):3183–91.

    Google Scholar 

  74. Jain RK. Barriers to drug delivery in solid tumors. Sci Am. 1994;271(1):58–65.

    CAS  PubMed  Google Scholar 

  75. The JRK, Eugene M. Landis Award Lecture 1996. Delivery of molecular and cellular medicine to solid tumors. Microcirculation. 1997;4(1):1–23.

    Google Scholar 

  76. Jain RK, Munn LL, Fukumura D. Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer. 2002;2(4):266–76.

    CAS  PubMed  Google Scholar 

  77. Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res. 2000;60(16):4324–7.

    CAS  PubMed  Google Scholar 

  78. Heldin CH, Rubin K, Pietras K, Ostman A. High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer. 2004;4(10):806–13.

    CAS  PubMed  Google Scholar 

  79. Milosevic MF, Fyles AW, Wong R, Pintilie M, Kavanagh MC, Levin W, et al. Interstitial fluid pressure in cervical carcinoma: within tumor heterogeneity, and relation to oxygen tension. Cancer. 1998;82(12):2418–26.

    CAS  PubMed  Google Scholar 

  80. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987;47(12):3039–51.

    CAS  PubMed  Google Scholar 

  81. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.

    CAS  PubMed  Google Scholar 

  82. Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989;49(16):4373–84.

    CAS  PubMed  Google Scholar 

  83. Kim KM, McDonagh CF, Westendorf L, et al. Anti-CD30 diabody—drug conjugates with potent antitumor activity. Mol Cancer Ther. 2008;7:2486–97.

    CAS  PubMed  Google Scholar 

  84. Newell DR. Flasks, fibres and flanks—pre-clinical tumour models for predicting clinical antitumor activity. Br J Cancer. 2001;84(10):1289–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Johnson JI, Decker S, Zaharevitz D, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84(10):1424–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Plowman J, Dykes DJ, Hollingshead M, et al. Anticancer drug development guide. Cancer Drug Discov Dev. 1997:101-125.

  87. Hoffman RM. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Investig New Drugs. 1999;17:343–59.

    CAS  Google Scholar 

  88. Steel GG et al. The response to chemotherapy of a variety of human tumour xenografts. Br J Cancer. 1983;47:1–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Hood JD, Cheresh DA. Building a better trap. Proc Natl Acad Sci U S A. 2003;100:8624–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Fichtner I, Rolff J, Soong R, et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res. 2008;14:6456–68.

    CAS  PubMed  Google Scholar 

  91. Lute KD, May Jr KF, Lu P, et al. Human CTLA4 knock-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti-CTLA-4 antibodies. Blood. 2005;106:3127–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Tabrizi MA, Bornstein GG, Klakamp SL, et al. Translational strategies for development of monoclonal antibodies from discovery to the clinic. Drug Discov Today. 2009;14(5–6):298–305.

    CAS  PubMed  Google Scholar 

  93. Griffin JD, Linch D, Sabbath K, et al. A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells. Leuk Res. 1984;8:521–34.

    CAS  PubMed  Google Scholar 

  94. Hamann PR, Hinman LM, Hollander I, et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem. 2002;13:47–58.

    CAS  PubMed  Google Scholar 

  95. Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7:1490–6.

    CAS  PubMed  Google Scholar 

  96. Matusmoto T, Jimi S, Hara S, et al. Importance of inducible multidrug resistance1 expression in HL-60 cells resistant to gemtuzumab ozogamicin. Leuk Lymphoma. 2012;53:1399–405.

    Google Scholar 

  97. van Der Velden VH, te Marvelde JG, Hoogeveen PG, et al. Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood. 2001;97:3197–204.

    Google Scholar 

  98. Polakis P. Arming antibodies for cancer therapy. Curr Opin Pharmacol. 2005;5:382–7.

    CAS  PubMed  Google Scholar 

  99. McKoy JM, Angelotta C, Bennett CL, et al. Gemtuzumab ozogamicin-associated sinusoidal obstructive syndrome (SOS): an overview from the research on adverse drug events and reports (RADAR) project. Leuk Res. 2007;31:599–604.

    CAS  PubMed  Google Scholar 

  100. Larson RA, Sievers EL, Stadtmaeur EA, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005;104:1442–52.

    CAS  PubMed  Google Scholar 

  101. Maniecki MB, Hasle H, Fris-Hansen L, et al. Impaired CD163-mediated hemoglobin-scavenging and severe toxic symptoms in patients treated with gemtuzumab ozogamicin. Blood. 2008;112:1510–4.

    CAS  PubMed  Google Scholar 

  102. Maniecki MB, Hasle H, Bendix K, et al. Is hepatotoxicity in patients treated with gentuzumab ozogamicin due to specific targeting of hepatocytes? Leuk Res. 2011;35:e84–6.

    PubMed  Google Scholar 

  103. Lo Coco F, Ammatuna E, Noguera N. Treatment of acute promyelocytic leukemia with gemtuzumab ozogamicin. Clin Adv Hematol Oncol. 2006;4:57–62.

    PubMed  Google Scholar 

  104. Candoni A, Damiani D, Michelutti A, et al. Clinical characteristics, prognostic factors and multidrug resistance related protein expression in 36 adult patients with acute promyelocytic leukemia. Eur J Haematol. 2003;71:1–8.

    CAS  PubMed  Google Scholar 

  105. Burnett AK, Hills RK, Milligan D, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011;29:369–77.

    CAS  PubMed  Google Scholar 

  106. Prebet T, Etienne A, Devillier R, et al. Improved outcome of patients with low- and intermediate-risk cytogenetics acute myeloid leukemia (AML) in first relapse with gemtuzumab and cytarabine versus cytarabrine: results of a retrospective comparative study. Cancer. 2011;117:974–81.

    CAS  PubMed  Google Scholar 

  107. Manoukian G, Hagemeister F. Denileukin diftitox: a novel immunotoxin. Expert Opin Biol Ther. 2009;9:1445–51.

    CAS  PubMed  Google Scholar 

  108. Martin A, Gutierrez E, Muglia J, et al. A multicenter dose-escalation trial with denileukin diftitox (ONTAK, DAB389IL-2) in patients with severe psoriasis. J Am Acad Dermatol. 2001;45:871–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gadi G. Bornstein.

Additional information

Guest Editors: M. Tabrizi, I. Figueroa, and S. Sadekar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bornstein, G.G. Antibody Drug Conjugates: Preclinical Considerations. AAPS J 17, 525–534 (2015). https://doi.org/10.1208/s12248-015-9738-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-015-9738-4

KEY WORDS

Navigation