Skip to main content
Log in

Impact of Glycation on Antibody Clearance

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Glycation of therapeutic proteins occurs during mammalian cell culture expression and upon administration to patients. Since the chemical attachment of mannose or other sugars via a chemical linker has been shown to increase a protein’s clearance rate in mice through the mannose receptor, we explored the effect of mannose glycation on the clearance of an IgG in mice. An IgG decorated with high levels of mannose (~18 mol/mol protein) through glycation did not clear faster in mice than the underivatized protein, whereas the same IgG decorated with mannose attached in a way to maintain the normal glycosidic bond (2-imino-2-methoxyethyl-1-thiomannoside, or IMT-mannose) at similar derivatization levels cleared significantly faster. Surface plasmon resonance studies revealed that the IgG derivatized with IMT-mannose bound tightly to the mannose receptor (KD = 20 nM) but the IgG glycated with mannose did not bind. These results indicate that glycation, even at unnaturally elevated levels, does not appear to be a clearance concern for therapeutic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AUC:

area under the curve

BSA:

bovine serum albumin

CHO:

Chinese hamster ovary

CRD:

carbohydrate recognition domain

IMT:

2-imino-2-methoxyethyl-1-thio-

LC:

liquid chromatography

mAb:

monoclonal antibody

MR:

mannose receptor

MRT:

mean residence time

MS:

mass spectrometry

PK:

phamacokinetics

RU:

resonance units

SPR:

surface plasmon resonance

References

  1. Lee SJ, Evers S, Roeder D, Parlow AF, Risteli J, Risteli L, et al. Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science (New York). 2002;295(5561):1898–901.

    Article  CAS  Google Scholar 

  2. Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, et al. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology. 2011;21(7):949–59.

    Article  CAS  PubMed  Google Scholar 

  3. Linehan SA, Martinez-Pomares L, Stahl PD, Gordon S. Mannose receptor and its putative ligands in normal murine lymphoid and nonlymphoid organs: In situ expression of mannose receptor by selected macrophages, endothelial cells, perivascular microglia, and mesangial cells, but not dendritic cells. J Exp Med. 1999;189(12):1961–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Taylor ME, Bezouska K, Drickamer K. Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. J Biol Chem. 1992;267(3):1719–26.

    CAS  PubMed  Google Scholar 

  5. Llorca O. Extended and bent conformations of the mannose receptor family. Cell Mol Life Sci : CMLS. 2008;65(9):1302–10.

    Article  CAS  PubMed  Google Scholar 

  6. Opanasopit P, Shirashi K, Nishikawa M, Yamashita F, Takakura Y, Hashida M. In vivo recognition of mannosylated proteins by hepatic mannose receptors and mannan-binding protein. Am J Physiol Gastrointest Liver Physiol. 2001;280(5):G879–89.

    CAS  PubMed  Google Scholar 

  7. Bucola R, Cerami A. Advanced Glycosylation: Chemistry, Biology, and Implications for Diabetes and Aging. Adv Pharmacol. 1992;23:1–33.

    Article  Google Scholar 

  8. Goetze AM, Liu YD, Arroll T, Chu L, Flynn GC. Rates and impact of human antibody glycation in vivo. Glycobiology. 2012;22(2):221–34.

    Article  CAS  PubMed  Google Scholar 

  9. Koenig RJ, Peterson CM, Jones RL, Saudek C, Lehrman M, Cerami A. Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus. N Engl J Med. 1976;295(8):417–20.

    Article  CAS  PubMed  Google Scholar 

  10. Austin GE, Mullins RH, Morin LG. Non-enzymic glycation of individual plasma proteins in normoglycemic and hyperglycemic patients. Clin Chem. 1987;33(12):2220–4.

    CAS  PubMed  Google Scholar 

  11. Miller AK, Hambly DM, Kerwin BA, Treuheit MJ, Gadgil HS. Characterization of site-specific glycation during process development of a human therapeutic monoclonal antibody. J Pharm Sci. 2011;100(7):2543–50.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang B, Yang Y, Yuk I, Pai R, McKay P, Eigenbrot C, et al. Unveiling a glycation hot spot in a recombinant humanized monoclonal antibody. Anal Chem. 2008;80(7):2379–90.

    Article  CAS  PubMed  Google Scholar 

  13. Kennedy DM, Skillen AW, Self CH. Glycation increases the vascular clearance rate of IgG in mice. Clin Exp Immunol. 1993;94(3):447–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Shukla AA, Hubbard B, Tressel T, Guhan S, Low D. Downstream processing of monoclonal antibodies—Application of platform approaches. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;848(1):28–39.

    Article  CAS  PubMed  Google Scholar 

  15. Lee YC, Stowell CP, Krantz MJ. 2-Imino-2-methoxyethyl 1-thioglycosides: New reagents for attaching sugars to proteins. Biochemistry. 1976;15(18):3956–63.

    Article  CAS  PubMed  Google Scholar 

  16. National Research Council (U.S.). Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Institute for Laboratory Animal Research (U.S.), National Academies Press (U.S.). Guide for the care and use of laboratory animals. 8th ed. Washington, D.C.: National Academies Press; 2011. xxv, 220 p. p.

  17. Gustafsson A, Sjoblom M, Strindelius L, Johansson T, Fleckenstein T, Chatzissavidou N, et al. Pichia pastoris-produced mucin-type fusion proteins with multivalent O-glycan substitution as targeting molecules for mannose-specific receptors of the immune system. Glycobiology. 2011;21(8):1071–86.

    Article  CAS  PubMed  Google Scholar 

  18. Chen X, Flynn GC. Gas-phase oligosaccharide nonreducing end (GONE) sequencing and structural analysis by reversed phase HPLC/mass spectrometry with polarity switching. J Am Soc Mass Spectrom. 2009;20(10):1821–33.

    Article  CAS  PubMed  Google Scholar 

  19. Neglia CI, Cohen HJ, Garber AR, Ellis PD, Thorpe SR, Baynes JW. 13C NMR investigation of nonenzymatic glucosylation of protein. Model studies using RNase A. J Biol Chem. 1983;258(23):14279–83.

    CAS  PubMed  Google Scholar 

  20. Rohovec J, Maschmeyer T, Aime S, Peters JA. The structure of the sugar residue in glycated human serum albumin and its molecular recognition by phenylboronate. Chemistry. 2003;9(10):2193–9.

    Article  CAS  PubMed  Google Scholar 

  21. Feinberg H, Park-Snyder S, Kolatkar AR, Heise CT, Taylor ME, Weis WI. Structure of a C-type carbohydrate recognition domain from the macrophage mannose receptor. J Biol Chem. 2000;275(28):21539–48.

    Article  CAS  PubMed  Google Scholar 

  22. East L, Isacke CM. The mannose receptor family. Biochim Biophys Acta. 2002;1572(2–3):364–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Guna Kannan, John McCarter, Andy Goetze, and Diana Liu for helpful discussions, Michael Shearer, Kiani Maryam, and Toung-vi Don for technical assistance and Fuat Doymaz for statistics advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory C. Flynn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Primack, R., Frohn, M. et al. Impact of Glycation on Antibody Clearance. AAPS J 17, 237–244 (2015). https://doi.org/10.1208/s12248-014-9694-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9694-4

KEY WORDS

Navigation