Skip to main content
Log in

A Pharmacokinetic Simulation Tool for Inhaled Corticosteroids

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The pharmacokinetic (PK) behavior of inhaled drugs is more complicated than that of other forms of administration. In particular, the effects of certain physiological (mucociliary clearance and differences in membrane properties in central and peripheral (C/P) areas of the lung), formulation (as it relates to drug deposition and particle dissolution rate), and patient-related factors (lung function; effects on C/P deposition ratio) affect the systemic PKs of inhaled drugs. The objectives of this project were (1) to describe a compartmental model that adequately describes the fate of inhaled corticosteroids (ICS) after administration while incorporating variability between and within subjects and (2) based upon the model, to provide a freely available tool for simulation of PK trials after ICS administration. This compartment model allows for mucociliary removal of undissolved particles from the lung, distinguishes between central and peripheral regions of the lung, and models drug entering the systemic circulation via the lung and the gastrointestinal tract. The PK simulation tool is provided as an extension package to the statistical software R (‘ICSpkTS’). It allows simulation of PK trials for hypothetical ICS and of four commercially available ICS (budesonide, flunisolide, fluticasone propionate, and triamcinolone acetonide) in a parallel study design. Simulated PK data and parameters agreed well with literature data for all four ICS. The ICSpkTS package is especially suitable to explore the effect of changes in model parameters on PK behavior and can be easily adjusted for other inhaled drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Other reasons such as variability in systemic distribution micro-constants (k 12 and k 21) across studies cannot be excluded.

REFERENCES

  1. Global Initiative for Asthma. Global strategy for asthma management and prevention. http://www.ginasthma.org/uploads/users/files/GINA_Report_2011.pdf. Accessed 12 June 2012.

  2. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. http://www.goldcopd.org/uploads/users/files/GOLD_Report_2011_Jan21.pdf. Accessed 12 June 2012.

  3. Hochhaus G, Mollmann H, Derendorf H, Gonzalez-Rothi RJ. Pharmacokinetic/pharmacodynamic aspects of aerosol therapy using glucocorticoids as a model. J Clin Pharmacol. 1997;37:881–92.

    PubMed  CAS  Google Scholar 

  4. Hochhaus G. New developments in corticosteroids. Proc Am Thorac Soc. 2004;1:269–74.

    Article  PubMed  CAS  Google Scholar 

  5. Brutsche MH, Brutsche IC, Munawar M, Langley SJ, Masterson CM, Daley-Yates PT, et al. Comparison of pharmacokinetics and systemic effects of inhaled fluticasone propionate in patients with asthma and healthy volunteers: a randomised crossover study. Lancet. 2000;356:556–61.

    Article  PubMed  CAS  Google Scholar 

  6. Singh SD, Whale C, Houghton N, Daley-Yates P, Kirby SM, Woodcock AA. Pharmacokinetics and systemic effects of inhaled fluticasone propionate in chronic obstructive pulmonary disease. Br J Clin Pharmacol. 2003;55:375–81.

    Article  PubMed  CAS  Google Scholar 

  7. Harrison LI, Novak CC, Needham MJ, Ratner P. Comparative pulmonary function and pharmacokinetics of fluticasone propionate and salmeterol xinafoate delivered by two dry powder inhalers to patients with asthma. J Aerosol Med Pulm Drug Deliv. 2011;24:245–52.

    Article  PubMed  CAS  Google Scholar 

  8. Holford NH, Kimko HC, Monteleone JP, Peck CC. Simulation of clinical trials. Annu Rev Pharmacol Toxicol. 2000;40:209–34.

    Article  PubMed  CAS  Google Scholar 

  9. Brown Jr RA, Schanker LS. Absorption of aerosolized drugs from the rat lung. Drug Metab Dispos. 1983;11:355–60.

    PubMed  CAS  Google Scholar 

  10. Schanker LS, Mitchell EW, Brown Jr RA. Species comparison of drug absorption from the lung after aerosol inhalation or intratracheal injection. Drug Metab Dispos. 1986;14:79–88.

    PubMed  CAS  Google Scholar 

  11. Edsbacker S, Wollmer P, Selroos O, Borgstrom L, Olsson B, Ingelf J. Do airway clearance mechanisms influence the local and systemic effects of inhaled corticosteroids? Pulm Pharmacol Ther. 2008;21:247–58.

    Article  PubMed  Google Scholar 

  12. R Development Core Team. R: A language and environment for statistical computing. http://www.r-project.org/. Accessed 12 June 2012.

  13. Wu K, Blomgren AL, Ekholm K, Weber B, Edsbaecker S, Hochhaus G. Budesonide and ciclesonide: effect of tissue binding on pulmonary receptor binding. Drug Metab Dispos. 2009;37:1421–6.

    Article  PubMed  CAS  Google Scholar 

  14. Byron PR. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J Pharm Sci. 1986;75:433–8.

    Article  PubMed  CAS  Google Scholar 

  15. Lee SL, Adams WP, Li BV, Conner DP, Chowdhury BA, Yu LX. In vitro considerations to support bioequivalence of locally acting drugs in dry powder inhalers for lung diseases. AAPS J. 2009;11:414–23.

    Article  PubMed  CAS  Google Scholar 

  16. O’Riordan TG, Zwang J, Smaldone GC. Mucociliary clearance in adult asthma. Am Rev Respir Dis. 1992;146:598–603.

    PubMed  Google Scholar 

  17. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. New York: Informa Healthcare; 1982. p. 419–24.

    Google Scholar 

  18. Krishnaswami S, Hochhaus G, Derendorf H. An interactive algorithm for the assessment of cumulative cortisol suppression during inhaled corticosteroid therapy. AAPS PharmSci. 2000;2:28–37.

    Article  Google Scholar 

  19. Clark AR. Understanding penetration index measurements and regional lung targeting. J Aerosol Med Pulm Drug Deliv. 2012;25:179–87.

    Article  PubMed  Google Scholar 

  20. Moellmann HW, Hochhaus G, Tromm A, Froehlich P, Moellmann AC, Krieg M, et al. Pharmcokinetics and pharmacodynamics of budesonide pH-modified release capsules. In: Moellmann HW, May B, editors. Glucocortocoid therapy in chronic inflammatory bowel disease. Norwell: Kluwer; 1996. p. 107–20.

    Google Scholar 

  21. Derendorf H, Hochhaus G, Rohatagi S, Mollmann H, Barth J, Sourgens H, et al. Pharmacokinetics of triamcinolone acetonide after intravenous, oral, and inhaled administration. J Clin Pharmacol. 1995;35:302–5.

    PubMed  CAS  Google Scholar 

  22. Rohatagi S, Hochhaus G, Mollmann H, Barth J, Galia E, Erdmann M, et al. Pharmacokinetic and pharmacodynamic evaluation of triamcinolone acetonide after intravenous, oral, and inhaled administration. J Clin Pharmacol. 1995;35:1187–93.

    PubMed  CAS  Google Scholar 

  23. Borgstrom L. Deposition patterns with Turbuhaler. J Aerosol Med. 1994;7:S49–53.

    Article  PubMed  CAS  Google Scholar 

  24. Borgstrom L, Bondesson E, Moren F, Trofast E, Newman SP. Lung deposition of budesonide inhaled via Turbuhaler: a comparison with terbutaline sulphate in normal subjects. Eur Respir J. 1994;7:69–73.

    Article  PubMed  CAS  Google Scholar 

  25. Pitcairn G, Reader S, Pavia D, Newman S. Deposition of corticosteroid aerosol in the human lung by Respimat Soft Mist inhaler compared to deposition by metered dose inhaler or by Turbuhaler dry powder inhaler. J Aerosol Med. 2005;18:264–72.

    Article  PubMed  CAS  Google Scholar 

  26. Wildhaber JH, Devadason SG, Wilson JM, Roller C, Lagana T, Borgstrom L, et al. Lung deposition of budesonide from turbuhaler in asthmatic children. Eur J Pediatr. 1998;157:1017–22.

    Article  PubMed  CAS  Google Scholar 

  27. Ryrfeldt A, Andersson P, Edsbäcker S, Tönnesson M, Davies D, Pauwels R. Pharmacokinetics and metabolism of budesonide, a selective glucocorticoid. Eur J Respir Dis Suppl. 1982;122:86–95.

    PubMed  CAS  Google Scholar 

  28. Thorsson L, Edsbacker S, Conradson TB. Lung deposition of budesonide from Turbuhaler is twice that from a pressurized metered-dose inhaler P-MDI. Eur Respir J. 1994;7:1839–44.

    Article  PubMed  CAS  Google Scholar 

  29. Kallen A, Thorsson L. Drug disposition analysis: a comparison between budesonide and fluticasone. J Pharmacokinet Pharmacodyn. 2003;30:239–56.

    Article  PubMed  Google Scholar 

  30. Mollmann H, Wagner M, Krishnaswami S, Dimova H, Tang Y, Falcoz C, et al. Single-dose and steady-state pharmacokinetic and pharmacodynamic evaluation of therapeutically clinically equivalent doses of inhaled fluticasone propionate and budesonide, given as Diskus or Turbohaler dry-powder inhalers to healthy subjects. J Clin Pharmacol. 2001;41:1329–38.

    Article  PubMed  CAS  Google Scholar 

  31. Thorsson L, Edsbacker S, Kallen A, Lofdahl CG. Pharmacokinetics and systemic activity of fluticasone via Diskus and pMDI, and of budesonide via Turbuhaler. Br J Clin Pharmacol. 2001;52:529–38.

    Article  PubMed  CAS  Google Scholar 

  32. Mackie AE, Ventresca GP, Fuller RW, Bye A. Pharmacokinetics of intravenous fluticasone propionate in healthy subjects. Br J Clin Pharmacol. 1996;41:539–42.

    Article  PubMed  CAS  Google Scholar 

  33. Krishnaswami S, Hochhaus G, Mollmann H, Barth J, Derendorf H. Interpretation of absorption rate data for inhaled fluticasone propionate obtained in compartmental pharmacokinetic modeling. Int J Clin Pharmacol Ther. 2005;43:117–22.

    PubMed  CAS  Google Scholar 

  34. Berridge MS, Lee Z, Heald DL. Pulmonary distribution and kinetics of inhaled [11C]triamcinolone acetonide. J Nucl Med. 2000;41:1603–11.

    PubMed  CAS  Google Scholar 

  35. Harrison TW, Tattersfield AE. Plasma concentrations of fluticasone propionate and budesonide following inhalation from dry powder inhalers by healthy and asthmatic subjects. Thorax. 2003;58:258–60.

    Article  PubMed  CAS  Google Scholar 

  36. Mortimer KJ, Tattersfield AE, Tang Y, Wu K, Lewis S, Hochhaus G, et al. Plasma concentrations of fluticasone propionate and budesonide following inhalation: effect of induced bronchoconstriction. Br J Clin Pharmacol. 2007;64:439–44.

    Article  PubMed  CAS  Google Scholar 

  37. Dalby C, Polanowski T, Larsson T, Borgstrom L, Edsbacker S, Harrison TW. The bioavailability and airway clearance of the steroid component of budesonide/formoterol and salmeterol/fluticasone after inhaled administration in patients with COPD and healthy subjects: a randomized controlled trial. Respir Res. 2009;10:104.

    Article  PubMed  Google Scholar 

  38. Argenti D, Shah B, Heald D. A study comparing the clinical pharmacokinetics, pharmacodynamics, and tolerability of triamcinolone acetonide HFA-134a metered-dose inhaler and budesonide dry-powder inhaler following inhalation administration. J Clin Pharmacol. 2000;40:516–26.

    Article  PubMed  CAS  Google Scholar 

  39. Hirst PH, Pitcairn GR, Richards JC, Rohatagi S, Gillen MS, Newman SP. Deposition and pharmacokinetics of an HFA formulation of triamcinolone acetonide delivered by pressurized metered dose inhaler. J Aerosol Med. 2001;14:155–65.

    Article  PubMed  CAS  Google Scholar 

  40. Mollmann H, Derendorf H, Barth J, Meibohm B, Wagner M, Krieg M, et al. Pharmacokinetic/pharmacodynamic evaluation of systemic effects of flunisolide after inhalation. J Clin Pharmacol. 1997;37:893–903.

    PubMed  CAS  Google Scholar 

  41. Nolting A, Sista S, Abramowitz W. Flunisolide HFA vs flunisolide CFC: pharmacokinetic comparison in healthy volunteers. Biopharm Drug Dispos. 2001;22:373–82.

    Article  PubMed  CAS  Google Scholar 

  42. Nolting A, Sista S, Abramowitz W. Single-dose study to compare the pharmacokinetics of HFA flunisolide and CFC flunisolide. J Pharm Sci. 2002;91:424–32.

    Article  PubMed  CAS  Google Scholar 

  43. Richards J, Hirst P, Pitcairn G, Mahashabde S, Abramowitz W, Nolting A, et al. Deposition and pharmacokinetics of flunisolide delivered from pressurized inhalers containing non-CFC and CFC propellants. J Aerosol Med. 2001;14:197–208.

    Article  PubMed  CAS  Google Scholar 

  44. Zaborny BA, Lukacsko P, Barinov-Colligon I, Ziemniak JA. Inhaled corticosteroids in asthma: a dose-proportionality study with triamcinolone acetonide aerosol. J Clin Pharmacol. 1992;32:463–9.

    PubMed  CAS  Google Scholar 

  45. Gonda I. Drugs administered directly into the respiratory tract: modeling of the duration of effective drug levels. J Pharm Sci. 1988;77:340–6.

    Article  PubMed  CAS  Google Scholar 

  46. Hofmann W. Modelling inhaled particle deposition in the human lung—a review. J Aerosol Sci. 2011;42:693–724.

    Article  CAS  Google Scholar 

  47. Mortimer KJ, Harrison TW, Tang Y, Wu K, Lewis S, Sahasranaman S, et al. Plasma concentrations of inhaled corticosteroids in relation to airflow obstruction in asthma. J Clin Pharmacol. 2006;62:412–9.

    CAS  Google Scholar 

  48. Byron PR, Hindle M, Lange CF, Longest PW, McRobbie D, Oldham MJ, et al. In vivoin vitro correlations: predicting pulmonary drug deposition from pharmaceutical aerosols. J Aerosol Med Pulm Drug Deliv. 2010;23 Suppl 2:S59–69.

    PubMed  CAS  Google Scholar 

  49. Son Y-J, Horng M, Copley M, McConville JT. Optimization of an in vitro dissolution test method for inhalation formulations. Dissolution Technologies. 2010;1–8:6–13.

    Google Scholar 

  50. Rohatagi S, Bye A, Mackie AE, Derendorf H. Mathematical modeling of cortisol circadian rhythm and cortisol suppression. Eur J Pharm Sci. 1996;4:341–50.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Saskia Fuhrmann, Uta Schilling, and especially Bhargava Kandala, for all their assistance with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guenther Hochhaus.

Appendices

Appendix

Laplace transformation (17) of Eqs. 17 and rearrangements yields

$$ {{\overline{\mathrm{LC}}}_1}=\frac{{\mathrm{L}{{\mathrm{C}}_{1,0 }}}}{{\left( {s+\kappa } \right)}} $$
(10)
$$ {{\overline{\mathrm{LP}}}_1}=\frac{{\mathrm{L}{{\mathrm{P}}_{1,0 }}}}{{\left( {s+{k_{\mathrm{diss}}}} \right)}} $$
(11)
$$ {{\overline{\mathrm{LC}}}_2}=\frac{{{k_{\mathrm{diss}}}*\mathrm{L}{{\mathrm{C}}_{1,0 }}}}{{\left( {s+{k_{{\mathrm{pul},\ C}}}} \right)\left( {s+\kappa } \right)}} $$
(12)
$$ {{\overline{\mathrm{LP}}}_2}=\frac{{{k_{\mathrm{diss}}}*\mathrm{L}{{\mathrm{P}}_{1,0 }}}}{{\left( {s+{k_{{\mathrm{pul},\ P}}}} \right)\left( {s+{k_{\mathrm{diss}}}} \right)}} $$
(13)
$$ \overline{A}={F_{\mathrm{BA}}}*\left( {\frac{{{k_{\mathrm{muc}}}*\mathrm{L}{{\mathrm{C}}_{1,0 }}}}{{\left( {s+{k_a}} \right)\left( {s+\kappa } \right)}}+\frac{A_0 }{{\left( {s+{k_a}} \right)}}} \right) $$
(14)
$$ \overline{X}=\frac{{{k_{21 }}*\overline{P}+{k_{{\mathrm{pul},\ C}}}*{{{\overline{\mathrm{LC}}}}_2}+{k_{{\mathrm{pul},\ P}}}*{{{\overline{\mathrm{LP}}}}_2}+{k_a}*\overline{A}}}{{\left( {s+{k_{10 }}+{k_{12 }}} \right)}} $$
(15)
$$ \overline{P}=\frac{{{k_{12 }}*\overline{X}}}{{s+{k_{21 }}}} $$
(16)

where s represents the Laplace operator, F BA was defined above, and LC1,0, LP1,0, and A 0 denote the initial amount of drug in the dissolution compartments of the central and peripheral lung, and the GI absorption compartment, respectively. Particularly,

$$ \mathrm{L}{{\mathrm{C}}_{1,0 }}=\mathrm{Dose}*{F_{\mathrm{Lung}}}*{F_C} $$
(17)
$$ \mathrm{L}{{\mathrm{P}}_{1,0 }}=\mathrm{Dose}*{F_{\mathrm{Lung}}}*\left( {1-{F_C}} \right) $$
(18)
$$ {A_0}=\left( {1-{F_{\mathrm{Lung}}}} \right)*\mathrm{Dose} $$
(19)

where Dose is the by-the-inhaler-emitted dose, F Lung is the fraction of the emitted dose that is deposited in the lung, and F C is the fraction of the lung dose that is deposited in central lung regions. Substitution of Eq. 1014 and Eq. 16 into Eq. 15 and defining α * β = k 10 * k 21 and α + β = k 10 + k 12 + k 21 yields

$$ \overline{X}={{\overline{X}}_1}+{{\overline{X}}_2}+{{\overline{X}}_3}+{{\overline{X}}_4} $$
(20)

where

$$ {{\overline{X}}_1}=\frac{{{k_{{\mathrm{pul},\ C}}}*{k_{\mathrm{diss}}}*\mathrm{L}{{\mathrm{C}}_{1,0 }}*\left( {s+{k_{21 }}} \right)}}{{\left( {s+\alpha } \right)\left( {s+\beta } \right)\left( {s+{k_{{\mathrm{pul},\ C}}}} \right)\left( {s+\kappa } \right)}} $$
(21)
$$ {{\overline{X}}_2}=\frac{{{k_{{\mathrm{pul},\ P}}}*{k_{\mathrm{diss}}}*\mathrm{L}{{\mathrm{P}}_{1,0 }}*\left( {s+{k_{21 }}} \right)}}{{\left( {s+\alpha } \right)\left( {s+\beta } \right)\left( {s+{k_{{\mathrm{pul},\ P}}}} \right)\left( {s+{k_{\mathrm{diss}}}} \right)}} $$
(22)
$$ {{\overline{X}}_3}=\frac{{k_a *{\text F_{\mathrm{BA}}}*{A_0}*\left( {s+{k_{21 }}} \right)}}{{\left( {s+\alpha } \right)\left( {s+\beta } \right)\left( {s+{k_a}} \right)}} $$
(23)
$$ {{\overline{X}}_4}=\frac{{k_a *{k_{\mathrm{muc}}}*{\text F_{\mathrm{BA}}}*\mathrm{L}{{\mathrm{C}}_{1,0}}*\left( {s+{k_{21 }}} \right)}}{{\left( {s+\alpha } \right)\left( {s+\beta } \right)\left( {s+{k_a}} \right)\left( {s+\kappa } \right)}} $$
(24)

Anti Laplace transformation (17) of Eq. 20 yields

$$ X={X_1}+{X_2}+{X_3}+{X_4} $$
(25)

where

$$ {X_1}={B_{11 }}*{e^{{-\alpha *t}}}+{B_{12 }}*{e^{{-\beta *t}}}+{B_{13 }}*{e^{{-{k_{{\mathrm{pul},\ C}}}*t}}}-\left( {{B_{11 }}+{B_{12 }}+{B_{13 }}} \right)*{e^{{-\kappa *t}}} $$
(26)
$$ {X_2}={B_{21 }}*{e^{{-\alpha *t}}}+{B_{22 }}*{e^{{-\beta *t}}}+{B_{23 }}*{e^{{-{k_{{\mathrm{pul},\ P}}}*t}}}-\left( {{B_{21 }}+{B_{22 }}+{B_{23 }}} \right)*{e^{{-{k_{{\mathrm{diss},\ P}}}*t}}} $$
(27)
$$ {X_3}={B_{31 }}*{e^{{-\alpha *t}}}+{B_{32 }}*{e^{{-\beta *t}}}-\left( {{B_{31 }}+{B_{32 }}} \right)*{e^{{-{k_a}*t}}} $$
(28)
$$ {X_4}={B_{41 }}*{e^{{-\alpha *t}}}+{B_{42 }}*{e^{{-\beta *t}}}+{B_{43 }}*{e^{{-{k_a}*t}}}-\left( {{B_{41 }}+{B_{42 }}+{B_{43 }}} \right)*{e^{{-\kappa *t}}} $$
(29)

and

$$ {B_{11 }}=\frac{{{k_{{\mathrm{pul},\ C}}}*{k_{\mathrm{diss}}}*\mathrm{L}{{\mathrm{C}}_{1,0 }}*\left( {{k_{21 }}-\alpha } \right)}}{{\left( {\beta -\alpha } \right)\left( {{k_{{\mathrm{pul},\ C}}}-\alpha } \right)\left( {\kappa -\alpha } \right)}} $$
(30)
$$ {B_{12 }}=\frac{{{k_{{\mathrm{pul},\ C}}}*{k_{\mathrm{diss}}}*\mathrm{L}{{\mathrm{C}}_{1,0 }}*\left( {{k_{21 }}-\beta } \right)}}{{\left( {\alpha -\beta } \right)\left( {{k_{{\mathrm{pul},\ C}}}-\beta } \right)\left( {\kappa -\beta } \right)}} $$
(31)
$$ {B_{13 }}=\frac{{{k_{{\mathrm{pul},\ C}}}*{k_{\mathrm{diss}}}*\mathrm{L}{{\mathrm{C}}_{1,0 }}*\left( {{k_{21 }}-{k_{{\mathrm{pul},\ C}}}} \right)}}{{\left( {\alpha -{k_{{\mathrm{pul},\ C}}}} \right)\left( {\beta -{k_{{\mathrm{pul},\ C}}}} \right)\left( {\kappa -{k_{{\mathrm{pul},\ C}}}} \right)}} $$
(32)
$$ {B_{21 }}=\frac{{{k_{{\mathrm{pul},\ P}}}*{k_{\mathrm{diss}}}*\mathrm{L}{{\mathrm{P}}_{1,0 }}*\left( {{k_{21 }}-\alpha } \right)}}{{\left( {\beta -\alpha } \right)\left( {{k_{{\mathrm{pul},\ P}}}-\alpha } \right)\left( {{k_{\mathrm{diss}}}-\alpha } \right)}} $$
(33)
$$ {B_{22 }}=\frac{{{k_{{\mathrm{pul},\ P}}}*{k_{\mathrm{diss}}}*\mathrm{L}{{\mathrm{P}}_{1,0 }}*\left( {{k_{21 }}-\beta } \right)}}{{\left( {\alpha -\beta } \right)\left( {{k_{{\mathrm{pul},\ P}}}-\beta } \right)\left( {{k_{\mathrm{diss}}}-\beta } \right)}} $$
(34)
$$ {B_{23 }}=\frac{{{k_{{\mathrm{pul},\ P}}}*{k_{\mathrm{diss}}}*\mathrm{L}{{\mathrm{P}}_{1,0 }}*\left( {{k_{21 }}-{k_{{\mathrm{pul},\ P}}}} \right)}}{{\left( {\alpha -{k_{{\mathrm{pul},\ P}}}} \right)\left( {\beta -{k_{{\mathrm{pul},\ P}}}} \right)\left( {{k_{\mathrm{diss}}}-{k_{{\mathrm{pul},\ P}}}} \right)}} $$
(35)
$$ {B_{31 }}=\frac{{k_a *{\text F_{\mathrm{BA}}}*{A_0}*\left( {{k_{21 }}-\alpha } \right)}}{{\left( {\beta -\alpha } \right)\left( {k_a -\alpha } \right)}} $$
(36)
$$ {B_{32 }}=\frac{{k_a *{\text F_{\mathrm{BA}}}*{A_0}*\left( {{k_{21 }}-\beta } \right)}}{{\left( {\alpha -\beta } \right)\left( {k_a -\beta } \right)}} $$
(37)
$$ {B_{41 }}=\frac{{k_a *{k_{\mathrm{muc}}}*{\text F_{\mathrm{BA}}}*\mathrm{L}{{\mathrm{C}}_{1,0}}^A*\left( {{k_{21 }}-\alpha } \right)}}{{\left( {\beta -\alpha } \right)\left( {k_a -\alpha } \right)\left( {\kappa -\alpha } \right)}} $$
(38)
$$ {B_{42 }}=\frac{{k_a *{k_{\mathrm{muc}}}*{\text F_{\mathrm{BA}}}*\mathrm{L}{{\mathrm{C}}_{1,0}}*\left( {{ { \it k}_{21 }}-\beta } \right)}}{{\left( {\alpha -\beta } \right)\left( {k_a -\beta } \right)\left( {\kappa -\beta } \right)}} $$
(39)
$$ {B_{43 }}=\frac{{k_a *{k_{\mathrm{muc}}}*{\text F_{\mathrm{BA}}}*\mathrm{L}{{\mathrm{C}}_{1,0}}*\left( {{ {\it k}_ {21 }}-{ { \it k } _a}} \right)}}{{\left( {\alpha -{k_a}} \right)\left( {\beta -{k_a}} \right)\left( {\kappa -{k_a}} \right)}} $$
(40)

ICSpkTS R EXTENSION PACKAGE—HANDS-ON EXAMPLES

The structure and functions of the ICSpkTS extension package are briefly explained in form of two hands-on examples. In the first example, the ICS module of the ICSpkTS package is introduced by a case study comparing the AUC and C max in healthy subjects and asthmatic patients. In the second example, the effect of having two FP formulations that differ in their pulmonary dissolution rate constant on the PK behavior is used to explain the FP module. Further details and functions of the ICSpkTS package can be found in the official documentation (available via http://www.cop.ufl.edu/pc/research/areas-of-research/inhaled-glucocorticoids/icspkts-r-extension/) and/or by accessing the official R help files.

HANDS-ON EXAMPLE 1: ICS

Running the following code in R will simulate a PK trial when 500 mcg of an hypothetical ICS are administered to 25 subjects per treatment group (healthy subjects (situation A) vs. asthmatic patients (situation B)) and plasma samples are obtained at 0.17, 0.33, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 h after administration. The asthmatic patients are modeled by increasing the fraction of drug that is deposited in the central regions of the lung and by lowering the mucociliary clearance rate constant.

#####################################################

#Number of Subjects (n) per Group

#####################################################

n.subjects = 25

#####################################################

#Time points (h) where plasma samples are obtained

#####################################################

Time = c(0.17,0.33,0.5,1,1.5,2,3,4,6,8,10,12,14,16,18,20,22,24)

#####################################################

#Situation A-Model Parameters-Typical Values (TV) and

#Between-Subject Variability (BSV)

#####################################################

Dose.A = 500

TV.FLung.A = 0.2

TV.FC.A = 0.5

TV.FBA.A = 0.1

TV.kdiss.A = 0.3

TV.kmuc.A = 0.5

TV.kpulC.A = 0.4

TV.kpulP.A = 0.4

TV.ka.A = 0.65

TV.CL.A = 49

TV.VC.A = 87

TV.k12.A = 0.1

TV.k21.A = 0.05

BSV.FLung.A = 0.2

BSV.FC.A = 0.2

BSV.FBA.A = 0.2

BSV.kdiss.A = 0.2

BSV.kmuc.A = 0.2

BSV.kpulC.A = 0.2

BSV.kpulP.A = 0.2

BSV.ka.A = 0.2

BSV.CL.A = 0.2

BSV.VC.A = 0.2

BSV.k12.A = 0.2

BSV.k21.A = 0.2

#####################################################

#Situation B-Model Parameters-Typical Values (TV) and

#Between-Subject Variability (BSV)

#####################################################

Dose.B = 500

TV.FLung.B = 0.2

TV.FC.B = 0.8

TV.FBA.B = 0.1

TV.kdiss.B = 0.3

TV.kmuc.B = 0.25

TV.kpulC.B = 0.4

TV.kpulP.B = 0.4

TV.ka.B = 0.65

TV.CL.B = 49

TV.VC.B = 87

TV.k12.B = 0.1

TV.k21.B = 0.05

BSV.FLung.B = 0.2

BSV.FC.B = 0.2

BSV.FBA.B = 0.2

BSV.kdiss.B = 0.2

BSV.kmuc.B = 0.2

BSV.kpulC.B = 0.2

BSV.kpulP.B = 0.2

BSV.ka.B = 0.2

BSV.CL.B = 0.2

BSV.VC.B = 0.2

BSV.k12.B = 0.2

BSV.k21.B = 0.2

#####################################################

#Within Subject Variability (WSV)

#####################################################

WSV = 0.3

#####################################################

#PK Trial Simulation

#####################################################

ICS(plots = FALSE,tables = FALSE)

The following output displaying the AUC and C max for both healthy subjects and asthmatic patients and 90% confidence intervals of the geometric means ratios (healthy/asthmatic) for both AUC and C max is generated by the ICSpkTS package.

Simulation was successful

AUC-Means (Arithmetic Means):

Situation A-Situation B

[1] 2.23 1.96

Cmax-Means (Arithmetic Means):

Situation A-Situation B

[1] 0.43 0.34

AUC-90% Confidence Interval (Geometric Mean Ratio):

[1] 0.99 1.28

Cmax-90% Confidence Interval (Geometric Mean Ratio):

[1] 1.04 1.39

Furthermore, a graph showing the average plasma concentration time profiles for both healthy subjects and asthmatic patients is created (Fig. 4).

Fig. 4
figure 4

Hands-on example 1, ICS module, simulation of a PK trial after administration of 500 mcg of a hypothetical ICS to 25 subjects per treatment group (healthy subjects (situation A) vs. asthmatic patients (situation B)), and plasma samples are obtained at 0.17, 0.33, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 h after administration. Asthmatic patients are modeled by increasing the fraction of drug that is deposited in the central regions of the lung and by lowering the mucociliary clearance rate constant

HANDS-ON EXAMPLE 2: FP

Running the following code in R will simulate a PK trial when 500 mcg FP are administered to 35 subjects per formulation group (formulation A and B differ in their dissolution rate constants, B dissolves 3-fold faster) and plasma samples are obtained at 0.17, 0.33, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 16, 20, and 24 h after administration.

#####################################################

#Number of Subjects (n) per Group

#####################################################

n.subjects = 35

#####################################################

#Time points (h) where plasma samples are obtained

#####################################################

Time = c(0.17,0.33,0.5,1,1.5,2,3,4,6,8,10,12,16,20,24)

#####################################################

#Formulation A-Model Parameters-Typical Values (TV) # and Between-Subject Variability (BSV)

#####################################################

Dose.A = 500

TV.FLung.A = 0.16

TV.FC.A = 0.5

TV.kdiss.A = 0.302

TV.kmuc.A = 0.938

TV.kpulC.A = 10

TV.kpulP.A = 20

BSV.FLung.A = 0.2

BSV.FC.A = 0.2

BSV.kdiss.A = 0.2

BSV.kmuc.A = 0.2

BSV.kpulC.A = 0.2

BSV.kpulP.A = 0.2

BSV.CL.A = 0.2

BSV.VC.A = 0.2

BSV.k12.A = 0.2

BSV.k21.A = 0.2

#####################################################

#Formulation B-Model Parameters-Typical Values (TV) and

#Between-Subject Variability (BSV)

#####################################################

Dose.B = 500

TV.FLung.B = 0.16

TV.FC.B = 0.5

TV.kdiss.B = 0.9

TV.kmuc.B = 0.938

TV.kpulC.B = 10

TV.kpulP.B = 20

BSV.FLung.B = 0.2

BSV.FC.B = 0.2

BSV.kdiss.B = 0.2

BSV.kmuc.B = 0.2

BSV.kpulC.B = 0.2

BSV.kpulP.B = 0.2

BSV.CL.B = 0.2

BSV.VC.B = 0.2

BSV.k12.B = 0.2

BSV.k21.B = 0.2

#####################################################

#Within-Subject Variability (WSV)

#####################################################

WSV = 0.3

#####################################################

#PK Trial Simulation

#####################################################

FP(plots = FALSE,tables = FALSE)

The following output displaying the AUC and C max for both formulations and 90% confidence intervals of the geometric means ratios (A/B) for both AUC and C max is generated by the ICSpkTS package.

Simulation was successful

AUC-Means (Arithmetic Means):

Formulation A-Formulation B

[1] 0.71 0.73

Cmax-Means (Arithmetic Means):

Formulation A-Formulation B

[1] 0.20 0.38

AUC-90% Confidence Interval (Geometric Mean Ratio):

[1] 0.85 1.09

Cmax-90% Confidence Interval (Geometric Mean Ratio):

[1] 0.45 0.60

Moreover, a graph showing the average plasma concentration time profiles for both formulations is generated (Fig. 5).

Fig. 5
figure 5

Hands-on example 2, FP module, simulation of a PK trial when 500 mcg FP are administered to 35 subjects per formulation group (formulations A and B differ in their dissolution rate constants; B dissolves 3-fold faster), and plasma samples are obtained at 0.17, 0.33, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 16, 20, and 24 h after administration

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, B., Hochhaus, G. A Pharmacokinetic Simulation Tool for Inhaled Corticosteroids. AAPS J 15, 159–171 (2013). https://doi.org/10.1208/s12248-012-9420-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9420-z

KEY WORDS

Navigation