Skip to main content
Log in

Characterization of Supersaturatable Formulations for Improved Absorption of Poorly Soluble Drugs

  • Review Article
  • Theme: Develop Enabling Technologies for Delivering Poorly Water Soluble Drugs: Current Status and Future Perspectives
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

With the increasing number of poorly water-soluble compounds in contemporary drug discovery pipelines, the concept of supersaturation as an effective formulation approach for enhancing bioavailability is gaining momentum. This is intended to design the formulation to yield significantly high intraluminal concentrations of the drug than the thermodynamic equilibrium solubility through achieving supersaturation and thus to enhance the intestinal absorption. The major challenges faced by scientists developing supersaturatable formulations include controlling the rate and degree of supersaturation with the application of polymeric precipitation inhibitor and maintenance of post-administration supersaturation. This review is intended to cover publications on this topic since April 2009. Scientific publications associated with characterization of supersaturatable systems and related preclinical and clinical pharmacokinetics (PK) studies are reviewed. Specifically, this review will address issues related to assessing the performance of supersaturatable systems including: (1) Diversified approaches for developing supersaturatable formulations, (2) meaningful in vitro test methods to evaluate supersaturatable formulations, and (3) in vivo PK study cases which have demonstrated direct relevance between the supersaturation state and the exposure observed in animal models and human subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Gao P, Morozowich W. Design and development of a new class of supersaturatable SEDDS with potential for enhanced oral absorption and reduced GI side effects. In: Hauss DJ, editor. Lipid based formulations for oral drug delivery: enhancing the bioavailability of poorly water-soluble drugs. New York: Dekker; 2007.

    Google Scholar 

  2. Gao P, Morozowich W. Development of supersaturatable SEDDS (S-SEDDS) formulations for improving the oral absorption of poorly soluble drugs. Exp Opin Drug Deliv. 2005;3:97–110.

    Article  Google Scholar 

  3. Brouwwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549–72.

    Article  Google Scholar 

  4. Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci. 2012;101(4):1355–77.

    Article  PubMed  CAS  Google Scholar 

  5. Mcallister M. Dynamic dissolution: a step closer to predicitive dissolution testing? Mol Pharm. 2010;7(5):1374–87.

    Article  CAS  Google Scholar 

  6. Mellaerts R, Aerts A, Caremans TP, Vermant J, Van den Mooter G, Martens JA, Augustijns P. Growth of itraconazole nanofibers in supersaturated simulated intestinal fluid. Mol Pharm. 2011;7(3):905–13.

    Article  Google Scholar 

  7. Carino SR, Sperry DC, Hawley M. Relative bioavailability estimation of carbamazepine crystal forms using an artificial stomach-duodenum model. J Pharm Sci. 2006;95(1):116–25.

    Article  PubMed  CAS  Google Scholar 

  8. Coutant C, Polster C. Novel dissolution methodologies: FBRM and artificial stomach duodenum. AAPS Webinar. Jan 25, 2012.

  9. Gao Y, Carr RA, Spence JK, Wang W, Turner TM, Lipari JL, Miller JM. A pH-dilution method for estimation of viorelevant drug solubility along the gastrointestinal tract: application to physiologically based pharmacokinetic modeling. Mol Pharm. 2010;7(5):1526–6.

    Article  Google Scholar 

  10. Shi Y, Gao P, Gong Y, Ping H. Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of celecoxib and its relevance to in vivo absorption. Mol Pharm. 2011;7(5):1458–65.

    Article  Google Scholar 

  11. Vangani S, Li X, Zhou P, Del-Barrio M, Chiu R, Cauchon N, Gao P, Medina C, Jasti B. Dissolution of poorly water-soluble drugs in biphasic media using USP 4 and fiber optic system. Clin Res Regul Aff. 2009;26(1–2):8–19.

    Article  Google Scholar 

  12. Buch P, Langguth P, Kataoka M, Yamashita S. IVIVC in oral absorption for fenofibrate immediate release tablets using a dissolution/permeation system. J Pharm Sci. 2009;98(6):2001–9.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang N, Zhang W, Jin Y, Quan DQ. Studies on preparation of carboamazepine (CBZ) supersaturatable self-microemulsifying (S-SMEDDS) formulation and relative bioavailability in beagle dogs. Pharm Dev Technol. 2011;16(4):415–21.

    Article  PubMed  CAS  Google Scholar 

  14. Matteucci ME, Paguio JC, Miller MA, Williams RO, Johnson KP. Highly supersaturated solutions from dissolution of amorphous itraconazole microparticles at pH 6.8. Mol Pharm. 2009;6(2):375–85.

    Article  PubMed  CAS  Google Scholar 

  15. Curatolo W, Nightingale JA, Herbig SM. Utility of hydroxypropylmethylcellulose acetate succinate (HPMCAS) for initiation and maintenance of drug supersaturation in the GI millirm. Pharm Res. 2009;26:1419–31.

    Article  PubMed  CAS  Google Scholar 

  16. Bevernage J, Forier T, Brouwers J, Tack J, Annaert P, Augustijns P. Excipient-meidated supersaturation stabilization in human intestinal fluids. Mol Pharm. 2011;8:564–70.

    Article  PubMed  CAS  Google Scholar 

  17. Warren DB, Benameur H, Porter CJH, Pouton CW. Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target. 2010;18(10):704–31.

    Article  PubMed  CAS  Google Scholar 

  18. DiNunzio JC, Hughey JR, Brough C, Miller DA, Williams RO, McGinity JW. Production of advanced solid dispersions for enhanced bioavailability of itraconazole using KinetiSol dispersing. Drug Dev Ind Pharm. 2010;36(9):1064–78.

    Article  PubMed  CAS  Google Scholar 

  19. Hawley M, Morozowich W. Modifying the diffusion layer of soluble salts of poorly water soluble basic drugs to improve dissolution performance. Mol Pharm. 2010;7(5):1441–9.

    Article  CAS  Google Scholar 

  20. Alonzo DE, Zhang GZ, Zhou D, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2009;27(4):608–18.

    Article  Google Scholar 

  21. Alonzo DE, Gao Y, Zhou DL, Mo HP, Zhang GZ, Taylor LS. Dissolution and precipitation behavior of amorphous solid dispersions. J Pharm Sci. 2011;100:3316–31.

    Article  PubMed  CAS  Google Scholar 

  22. Ilevbare GA, Liu HY, Edgar KJ, Taylor LS. Understanding polymer properties important for crystal growth inhibition impact of chemically diverse polymers on solution crystal growth of ritonavir. Cryst Growth Des. 2012;12(6):3133–43.

    Article  CAS  Google Scholar 

  23. Patel DD, Joguparthi V, Wang Z, Anderson BD. Maintenance of supersaturation I: indomethacin crystal growth kinetic modeling using an online second-derivative ultraviolet spectroscopic method. J Pharm Sci. 2011;100(7):2623–41.

    Article  PubMed  CAS  Google Scholar 

  24. Ghosh I, Bose S, Vippagunta R, Harmon F. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int J Pharm. 2011;409:260–8.

    Article  PubMed  CAS  Google Scholar 

  25. Van Speybroeck M, Mellaerts R, Mols R, Thi TD, Martens JA, Van Humbeeck J, Annaert P, Van den Mooter G, Augustijns P. Enhanced absorption of the poorly soluble drug fenofibrate by tuning its release rate from ordered mesoporous silica. Eur J Pharm Sci. 2010;41:623–30.

    Article  PubMed  Google Scholar 

  26. Miller MA, DiNunzio J, Matteucci ME, Ludhe BS, Willimas RO, Johnston KP. Flocculated amorphous itraconazole nanoparticls for enhanced in vitro supersaturation and in vivo bioavailability. Drug Dev Ind Pharm. 2012;38(5):557–70.

    Article  PubMed  CAS  Google Scholar 

  27. Ranzani LS, Font J, Galimany F, Santanach A, Gomez-Gomar AM, Casadevall G, Gryczke A. Enhanced in vivo absorption of CB-1 antagonist in rats via solid solutuions prepared by hot-melt extrusion. Drug Dev Ind Pharm. 2011;37(6):694–701.

    Article  PubMed  CAS  Google Scholar 

  28. Takano R, Takata N, Salto R, Furumoto K, Higo S, Hayashi Y, Machida M, Aso Y, Yamashita S. Quantitative analysis of the effect of supersaturation on in vivo drug absorption. Mol Pharm. 2010;7(5):1431–40.

    Article  CAS  Google Scholar 

  29. Polster CS, Atassi F, Wu SJ, Sperry DC. Use of artificial stomach-duodenum model for investigation of dosing fluid effect on clinical trial variability. Mol Pharm. 2010;7(5):1533–8.

    Article  CAS  Google Scholar 

  30. Mitra A, Kesisoglou F, Beauchamp M, Zhu W, Chiti F, Wu Y. Using absorption simulation and gastric pH modulated dog model for formulation development to overcome achlorhydria effect. Mol Pharm. 2011;8:2216–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Gao.

Additional information

Guest Editors: Ping Gao and Lawrence Yu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, P., Shi, Y. Characterization of Supersaturatable Formulations for Improved Absorption of Poorly Soluble Drugs. AAPS J 14, 703–713 (2012). https://doi.org/10.1208/s12248-012-9389-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9389-7

Key words

Navigation