Skip to main content

Advertisement

Log in

Pharmacokinetic Evaluation of Intranasally Administered Vinyl Polymer-Coated Lorazepam Microparticles in Rabbits

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The intranasal (IN) administration of lorazepam is desirable in order to maximize speed of onset and minimise carry-over sedation; however, this benzodiazepine is prone to chemical hydrolysis and poor airway retention, and thus, innovative epithelial presentation is required. The aim of this study was to understand how the in situ self-assembly of a mucoretentive delivery system, formed by the dissolution of vinyl polymer-coated microparticles in the nasal mucosa, would influence lorazepam pharmacokinetics (PK). IN administration of the uncoated lorazepam powder (particle size, 6.7 ± 0.1 μm) generated a biphasic PK profile, which was indicative of sequential intranasal and oral absorption (n = 6; dose, 5 mg/kg). Coating the drug with the vinyl polymer, MP1 (9.9 ± 0.5 μm with 38.8 ± 14.0%, w/w lorazepam) and MP2 (10.7 ± 0.1 μm with 47.0 ± 1.0%, w/w lorazepam), allowed rapid systemic absorption (MP1, T max 14.2 ± 4.9 min; MP2, T max 9.3 ± 3.8 min) in rabbits and modified the PK profiles in a manner that suggested successful nasal retention. The poly(vinyl pyrrolidone)-rich MP2 system provided the best comparative bioavailability, it prolonged the early-phase nasal drug absorption and minimised drug mucociliary clearance, which correlated well with the intermolecular hydrogen-bond-driven vinyl polymer interactions observed in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Touitou E, Godin B, Duchi S. Compositions for nasal delivery. US Patent Appl. 2009;0047234.

  2. Cartt S, Medeiros D. Nasal administration of benzodiazepines. US Patent Appl. 2008;0279784.

  3. Jamieson G, Des Jardin M, Allphin C. Pharmaceutical compositions of benzodiazepines and method of use thereof. US Patent Appl. 2008;0070904.

  4. Cloyd JC, Siegel RA, Grosberg A, Hou H. Supersaturated benzodiazepine solutions and their delivery. US Patent Appl. 2007;0208011.

  5. Wermeling DP. System and method for intranasal administration of lorazepam. US Patent. 2003;6610271.

  6. Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 1999;337:1–24.

    Article  Google Scholar 

  7. Illum L. Nasal drug delivery—possibilities, problems and solutions. J Control Release. 2003;87:187–98.

    Article  PubMed  CAS  Google Scholar 

  8. Moffat AC, Osselton MD, Widdop B. Clarke’s analysis of drugs and poisons: in pharmaceuticals, body fluids, and postmortem material 3rd ed. London: Pharmaceutical Press; 2004. p. 1187–8.

    Google Scholar 

  9. Wermeling DP. System and method for intranasal administration of lorazepam. US Patent Appl. 2006;0147386.

  10. Lau SWJ, Slattery JT. Absorption of diazepam and lorazepam following intranasal administration. Int J Pharm. 1989;54:171–4.

    Article  Google Scholar 

  11. Hammad MA, Muller BW. Solubility and stability of lorazepam in bile salt/soya phosphatidylcholine-mixed micelles. Drug Dev Ind Pharm. 1999;25:409–17.

    Article  PubMed  CAS  Google Scholar 

  12. Jug M, Bećirević-Laćan M. Development of a cyclodextrin-based nasal delivery system for lorazepam. Drug Dev Ind Pharm. 2008;34:817–26.

    Article  PubMed  CAS  Google Scholar 

  13. Goycoolea FM, Lollo G, Remunan-Lopez C, Quaglia F, Alonso MJ. Chitosan-alginate blended nanoparticles as carriers for the transmucosal delivery of macromolecules. Biomacromolecules. 2009;10:1736–43.

    Article  PubMed  CAS  Google Scholar 

  14. Wermeling DP, Miller JL, Archer SM, Manaligo JM, Rudy AC. Bioavailability and pharmacokinetics of lorazepam after intranasal, intravenous and intramuscualal administration. J Clin Pharm. 2001;41:1225–31.

    Article  CAS  Google Scholar 

  15. Donovan MD, Huang Y. Large molecule and particulate uptake in the nasal cavity: the effect of size on nasal absorption. Adv Drug Deliv Rev. 1998;29:147–55.

    Article  PubMed  CAS  Google Scholar 

  16. Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res. 1999;16:1576–81.

    Article  PubMed  CAS  Google Scholar 

  17. Vila A, Sánchez A, Evora C, Soriano I, McCallion O, Alonso MJ. PLA-PEG particles as nasal protein carriers: the influence of the particle size. Int J Pharm. 2005;292:43–52.

    Article  PubMed  CAS  Google Scholar 

  18. Illum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci. 2007;96:473–83.

    Article  PubMed  CAS  Google Scholar 

  19. Vila A, Gill H, McCallion O, Alonso MJ. Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J Control Release. 2004;98:231–44.

    Article  PubMed  CAS  Google Scholar 

  20. Buttini F, Soltani A, Colombo P, Marriott C, Jones SA. Multilayer PVA adsorption onto hydrophobic drug substrates to engineer drug-rich microparticles. Eur J Pharm Sci. 2008;33:20–8.

    Article  PubMed  CAS  Google Scholar 

  21. Traynor MJ, Zhao Y, Brown MB, Jones SA. Vinyl polymer-coated lorazepam particles for drug delivery to the airways. Int J Pharm. 2011;410:9–16.

    Article  PubMed  CAS  Google Scholar 

  22. Jones SA, Martin GP, Royall PG, Brown MB. Biocompatible polymer blends: effects of physical processing on the molecular interaction of poly(vinyl alcohol) and poly(vinyl pyrrolidone). J Appl Polym Sci. 2005;98:2290–9.

    Article  CAS  Google Scholar 

  23. Gottwald MD, Akers LC, Liu PK, Orsulak PJ, Corry MD, Bacchetti P, et al. Prehospital stability of diazepam and lorazepam. Am J Emerg Med. 1999;17:333–7.

    Article  PubMed  CAS  Google Scholar 

  24. Sweetman SC, editor. Martindale: the complete drug reference. 36th ed. London: Pharmaceutical Press; 2009.

  25. Wang J, Tabata Y, Morimoto K. Aminated gelatin microspheres as a nasal delivery system for peptide drugs: evaluation of in vitro release and in vivo insulin absorption in rats. J Control Release. 2006;113:31–7.

    Article  PubMed  CAS  Google Scholar 

  26. Dokoumetzidis A, Macheras P. A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int J Pharm. 2006;321:1–11.

    Article  PubMed  CAS  Google Scholar 

  27. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;50:874–5.

    Article  PubMed  CAS  Google Scholar 

  28. Baumann D, Bachert C, Hogger P. Dissolution in nasal fluid, retention and anti-inflammatory activity of fluticasone furoate in human nasal tissue ex vivo. Clin Exp Allergy. 2009;39:1540–50.

    Article  PubMed  CAS  Google Scholar 

  29. Nakamura F, Ohta R, Machida Y, Nagai T. In vitro and in vivo nasal mucoadhesion of some water-soluble polymers. Int J Pharm. 1996;134:173–81.

    Article  CAS  Google Scholar 

  30. Bailey L, Ward M, Mahmoud NM. Clinical pharmacokinetics of benzodiazepines. J Clin Pharmacol. 1994;34:804–11.

    PubMed  CAS  Google Scholar 

  31. Ugwoke MI, Agu RU, Verbeke N, Kinget R. Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Deliv Rev. 2005;57:1640–65.

    Article  PubMed  CAS  Google Scholar 

  32. Patel MM, Smart JD, Nevell TG, Ewen RJ, Eaton PJ, Tsibouklis J. Mucin/poly(acrylic acid) interactions: a spectroscopic investigation of mucoadhesion. Biomacromolecules. 2003;4(5):1184–90.

    Article  PubMed  CAS  Google Scholar 

  33. Herman RJ, Chaudhary A. In vitro binding of lorazepam and lorazepam glucuronide to cholestyramine, colestipol, and activated charcoal. Pharm Res. 1991;8:538–40.

    Article  PubMed  CAS  Google Scholar 

  34. Mistry AG, Sys Zoffmann K, Jørgen JR, Howard KA, Stolnik S, Illum L. Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium. J Drug Target. 2009;17(7):543–52.

    Article  PubMed  CAS  Google Scholar 

  35. de Visser SJ, van der Post JP, de Waal PP, Cornet F, Cohen AF, van Gerven JM. Biomarkers for the effects of benzodiazepines in healthy volunteers. Br J Clin Pharmacol. 2003;55:39–50.

    Article  PubMed  Google Scholar 

  36. Terzano MG, Rossi M, Palomba V, Smerieri A, Parrino L. New drugs for insomnia: comparative tolerability of zopiclone, zolpidem and zaleplon. Drug Saf. 2003;26:261–82.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial support from MedPharm Ltd. (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart A. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Brown, M.B., Khengar, R.H. et al. Pharmacokinetic Evaluation of Intranasally Administered Vinyl Polymer-Coated Lorazepam Microparticles in Rabbits. AAPS J 14, 218–224 (2012). https://doi.org/10.1208/s12248-012-9325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9325-x

KEY WORDS

Navigation