Skip to main content

Advertisement

Log in

Targeting TRPV1 as an Alternative Approach to Narcotic Analgesics to Treat Chronic Pain Conditions

  • Review Article
  • Theme: NIDA Symposium: Drugs of Abuse: Cutting-edge Research Technologies
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In spite of intense research efforts and after the dedicated Decade of Pain Control and Research, there are not many alternatives to opioid-based narcotic analgesics in the therapeutic armamentarium to treat chronic pain conditions. Chronic opioid treatment is associated with sedation, tolerance, dependence, hyperalgesia, respiratory depression, and constipation. Since the affective component is an integral part of pain perception, perhaps it is inevitable that potent analgesics possess the property of impacting pain pathways in the supraspinal structures. The question still remains to be answered is that whether a powerful analgesic can be devoid of narcotic effect and addictive potentials. Local anesthetics are powerful analgesics for acute pain by blocking voltage-gated sodium channels that are involved in generation and propagation of action potentials. Antidepressants and anticonvulsants have proven to be useful in the treatment of certain modalities of pain. In neuropathic pain conditions, the complexity arises because of the notion that neuronal circuitry is altered, as occurs in phantom pain, in that pain is perceived even in the absence of peripheral nociceptive inputs. If the locus of these changes is in the central nervous system, commonly used analgesics may not be very useful. This review focuses on the recent advances in nociceptive transmission and nociceptive transient receptor potential vanilloid 1 channel as a target for treating chronic pain conditions with its agonists/antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cortright DN, Szallasi A. TRP channels and pain. Curr Pharm Des. 2009;15:1736.

    Article  PubMed  CAS  Google Scholar 

  2. Patapoutian A, Tate S, Woolf CJ. Transient receptor potential channels targeting pain at the source. Nat Rev Drug Discov. 2009;8:55–68.

    Article  PubMed  CAS  Google Scholar 

  3. Khairatkar-Joshi N, Szallasi A. TRPV1 antagonists: the challenges for therapeutic targeting. Trends Mol Med. 2009;15:14–21.

    Article  PubMed  CAS  Google Scholar 

  4. Basbaum AI, Jessell TM. Principles of neural science. New York: McGraw-Hill; 2001.

    Google Scholar 

  5. Craig AD. Pain mechanisms: labeled lines versus convergence in central processing. Ann Rev Neurosci. 2003;26:1–30.

    Article  PubMed  CAS  Google Scholar 

  6. Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci. 2009;10:23–36.

    Article  PubMed  CAS  Google Scholar 

  7. Suzuki R, Dickenson A. Spinal and supraspinal contributions to central sensitization in peripheral neuropathy. Neurosignals. 2005;14:175–81.

    Article  PubMed  CAS  Google Scholar 

  8. Ikeda H, Kiritoshi T, Murase K. Synaptic plasticity in the spinal dorsal horn. Neurosci Res. 2009;64:133–6.

    Article  PubMed  Google Scholar 

  9. Zhao ZQ et al. Cellular basis of itch sensation. Science. 2009;325:1531–4.

    Article  PubMed  CAS  Google Scholar 

  10. Jeffry JA et al. Selective targeting of TRPV1 expressing sensory nerve terminals in the spinal cord for long lasting analgesia. PLoS ONE. 2009;4:7021.

    Article  CAS  Google Scholar 

  11. Scherrer G et al. Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell. 2009;137:1148–59.

    Article  PubMed  CAS  Google Scholar 

  12. Sherrington C. The integrative action of the nervous system. New York: Scribner; 1906.

    Google Scholar 

  13. Nilius B et al. Transient receptor potential cation channels in disease. Physiol Rev. 2007;87:167–217.

    Article  CAS  Google Scholar 

  14. Burgess PR, Perl ER. Myelinated afferent fibres responding specifically to noxious stimulation of the skin. J Physiol. 1967;190:541–62.

    PubMed  CAS  Google Scholar 

  15. Maggi CA, Meli A. The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen Pharmacol. 1988;19:1–43.

    PubMed  CAS  Google Scholar 

  16. Zeilhofer HU. Synaptic modulation in pain pathways. Rev Physiol Biochem Pharmacol. 2005;154:73–100.

    Article  PubMed  CAS  Google Scholar 

  17. Starowicz K et al. Tonic endovanilloid facilitation of glutamate release in brainstem descending antinociceptive pathways. J Neurosci. 2007;27(50):13739–49.

    Article  PubMed  CAS  Google Scholar 

  18. Morgan MM, Fields HL. Pronounced changes in the activity of nociceptive modulatory neurons in the rostral ventromedial medulla in response to prolonged thermal noxious stimuli. J Neurophysiol. 1994;72:1161–70.

    PubMed  CAS  Google Scholar 

  19. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288:1765–9.

    Article  PubMed  CAS  Google Scholar 

  20. Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001;413:203–10.

    Article  PubMed  CAS  Google Scholar 

  21. Nordin M et al. Ectopic sensory discharges and paresthesiae in patients with disorders of peripheral nerves, dorsal roots and dorsal columns. Pain. 1984;20:231–45.

    Article  PubMed  CAS  Google Scholar 

  22. Matzner O, Devor M. Hyperexcitability at sites of nerve injury depends on voltage sensitive sodium channels. J Neurophysiol. 1994;72:349–59.

    PubMed  CAS  Google Scholar 

  23. Ramer MS, Bisby MA. Rapid sprouting of sympathetic axons in dorsal root ganglia of rats with a chronic constriction injury. Pain. 1997;70:237–44.

    Article  PubMed  CAS  Google Scholar 

  24. McDonald DM et al. Neurogenic inflammation. A model for studying efferent actions of sensory nerves. Adv Exp Med Biol. 1996;410:453–62.

    PubMed  CAS  Google Scholar 

  25. Moreau ME et al. The kallikrein-kinin system: current and future pharmacological targets. J Pharmacol Sci. 2005;99:6–38.

    Article  PubMed  CAS  Google Scholar 

  26. Zahner MR et al. Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats. J Physiol. 2003;551:515–23.

    Article  PubMed  CAS  Google Scholar 

  27. Seyedi N, Maruyama R, Levi R. Bradykinin activates a cross-signaling pathway between sensory and adrenergic nerve endings in the heart: a novel mechanism of ischemic norepinephrine release? J Pharmacol Exp Ther. 1999;290:656–63.

    PubMed  CAS  Google Scholar 

  28. Kawamata M, Omote K. Involvement of increased excitatory amino acids and intracellular Ca2+ concentration in the spinal dorsal horn in an animal model of neuropathic pain. Pain. 1996;68:85–96.

    Article  PubMed  CAS  Google Scholar 

  29. Stiller CO et al. Release of gamma-aminobutyric acid in the dorsal horn and suppression of tactile allodynia by spinal cord stimulation in mononeuropathic rats. Neurosurgery. 1996;39:367–74.

    Article  PubMed  CAS  Google Scholar 

  30. Pernía-Andrade AJ et al. Spinal endocannabinoids and CB1 receptors mediate C-fiber-induced heterosynaptic pain sensitization. Science. 2009;325:760–4.

    Article  PubMed  CAS  Google Scholar 

  31. Ji RR, Woolf CJ. Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis. 2001;8:1–10.

    Article  PubMed  CAS  Google Scholar 

  32. Yaksh TL. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain. 1989;37:111–23.

    Article  PubMed  CAS  Google Scholar 

  33. Ahmadi S et al. PGE2 selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons. Nat Neurosci. 2002;5:34–40.

    Article  PubMed  CAS  Google Scholar 

  34. Coull JA et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438:1017–21.

    Article  PubMed  CAS  Google Scholar 

  35. Allan SM, Tyrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol. 2005;5:629–40.

    Article  PubMed  CAS  Google Scholar 

  36. Lissitsyn Y et al. Level of Toll-like receptor agonist exposure differentially determines chemokine production in humans. Can J Physiol Pharmacol. 2007;85:739–46.

    Article  PubMed  CAS  Google Scholar 

  37. Pabbidi RM et al. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity. Mol Pain. 2008;1:4–9.

    Google Scholar 

  38. Schilling T, Eder C. Importance of the non-selective cation channel TRPV1 for microglial reactive oxygen species generation. J Neuroimmunol. 2009;216:118–21.

    Article  PubMed  CAS  Google Scholar 

  39. Malan TP et al. CB2 cannabinoid receptor agonists: pain relief without psychoactive effects? Curr Opin Pharmacol. 2003;3:62–7.

    Article  PubMed  CAS  Google Scholar 

  40. Stucky CL, Gold MS, Zhang X. Mechanisms of pain. Proc Natl Acad Sci U S A. 2001;98:11845–6.

    Article  PubMed  CAS  Google Scholar 

  41. Ueda H. Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharmacol Ther. 2006;109:57–77.

    Article  PubMed  CAS  Google Scholar 

  42. Reuben SS. Preventing the development of complex regional pain syndrome after surgery. Anesthesiology. 2004;101:1215–24.

    Article  PubMed  Google Scholar 

  43. DuPen A, Shen D, Ersek M. Mechanisms of opioid-induced tolerance and hyperalgesia. Pain Manage Nurs. 2007;8:113–21.

    Article  Google Scholar 

  44. Quirion R. Pain, nociception and spinal opioid receptors. Prog Neuropsychopharmacol Biol Psychiatry. 1984;8:571–9.

    Article  PubMed  CAS  Google Scholar 

  45. Mansour A et al. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci. 1995;18:22–9.

    Article  PubMed  CAS  Google Scholar 

  46. Pasternak GW. Incomplete cross tolerance and multiple mu opioid peptide receptors. Trends Pharmacol Sci. 2001;22:67–70.

    Article  PubMed  CAS  Google Scholar 

  47. Ross JR et al. Clinical response to morphine in cancer patients and genetic variation in candidate genes. Pharmacogenomics J. 2005;5:324–36.

    Article  PubMed  CAS  Google Scholar 

  48. Raehal KM, Bohn LM. Mu opioid receptor regulation and opiate responsiveness. AAPS J. 2005;7:E587–91.

    Article  PubMed  CAS  Google Scholar 

  49. Angst MS, Clark JD. Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology. 2006;104:570–87.

    Article  PubMed  CAS  Google Scholar 

  50. Vanderah TW et al. Tonic descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance. J Neurosci. 2001;21:279–86.

    PubMed  CAS  Google Scholar 

  51. Kosten TR, George TP. The neurobiology of opioid dependence: implications for treatment. Sci Pract Perspect. 2002;1:13–20.

    Article  PubMed  Google Scholar 

  52. Takeda S et al. Opioid action on respiratory neuron activity of the isolated respiratory network in newborn rats. Anesthesiology. 2001;95:740–9.

    Article  PubMed  CAS  Google Scholar 

  53. Luca AD, Coupar IM. Insights into opioid action in the intestinal tract. Pharmacol Ther. 1996;69:103–15.

    Article  PubMed  Google Scholar 

  54. Burnstock G. P2X receptors in sensory neurons. Br J Anaesth. 2000;84:476–88.

    PubMed  CAS  Google Scholar 

  55. Sutherland SP et al. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci USA. 2001;98:711–6.

    Article  PubMed  CAS  Google Scholar 

  56. Ditting T et al. Putative role of epithelial sodium channels (ENaC) in the afferent limb of cardio renal reflexes in rats. Basic Res Cardiol. 2003;98:388–400.

    Article  PubMed  CAS  Google Scholar 

  57. Montell C. Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Neuron. 2001;32:1097–106.

    Article  PubMed  Google Scholar 

  58. Szallasi A, Blumberg PM. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev. 1999;51:159–212.

    PubMed  CAS  Google Scholar 

  59. Szallasi A et al. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov. 2007;6:357–72.

    Article  PubMed  CAS  Google Scholar 

  60. Levine JD, Alessandri-Haber N. TRP channels: targets for the relief of pain. Biochem Biophys Acta. 2007;1772:989–1003.

    PubMed  CAS  Google Scholar 

  61. Liedtke W. Molecular mechanisms of TRPV4-mediated neural signaling. Ann N Y Acad Sci. 2008;1144:42–52.

    Article  PubMed  CAS  Google Scholar 

  62. Stucky CL, Dubin AE, Jeske NA, Malin SA, McKemy DD, Story GM. Roles of transient receptor potential channels in pain. Brain Res Rev. 2009;60:2–23.

    Article  PubMed  CAS  Google Scholar 

  63. Gottlieb P et al. Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch. 2008;455:1097–103.

    Article  PubMed  CAS  Google Scholar 

  64. Lewin GR, Moshourab R. Mechanosensation and pain. J Neurobiol. 2004;61:30–44.

    Article  PubMed  Google Scholar 

  65. Premkumar LS, Sikand P. TRPV1: a target for next generation analgesics. Curr Pharmacol. 2008;6:151–63.

    CAS  Google Scholar 

  66. Caterina MJ et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24.

    Article  PubMed  CAS  Google Scholar 

  67. Davis JB et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. 2000;405:183–7.

    Article  PubMed  CAS  Google Scholar 

  68. Caterina MJ et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288:306–13.

    Article  PubMed  CAS  Google Scholar 

  69. Kauer JA, Gibson HE. Hot flash: TRPV channels in the brain. Trends Neurosci. 2009;32:215–24.

    Article  PubMed  CAS  Google Scholar 

  70. Razavi R et al. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell. 2006;127:1123–35.

    Article  PubMed  CAS  Google Scholar 

  71. Gram DX et al. Sensory nerve desensitization by resiniferatoxin improves glucose tolerance and increases insulin secretion in Zucker diabetic fatty rats and is associated with reduced plasma activity of dipeptidyl peptidase IV. Eur J Pharmacol. 2005;509:211–7.

    Article  PubMed  CAS  Google Scholar 

  72. Watanabe H, Murakami M, Ohba T, Takahashi Y, Ito H. TRP channel and cardiovascular disease. Pharmacol Ther. 2008;118:337–51.

    Article  PubMed  CAS  Google Scholar 

  73. Kohler R et al. Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler Thromb Vasc Biol. 2006;26:1495–502.

    Article  PubMed  CAS  Google Scholar 

  74. O'Neil RG, Heller S. The mechanosensitive nature of TRPV channels. Pflugers Arch. 2005;451:193–203.

    Article  PubMed  CAS  Google Scholar 

  75. Loukin SH, Su Z, Kung C. Hypotonic shocks activate rat TRPV4 in yeast in the absence of polyunsaturated fatty acids. FEBS Lett. 2009;583:754–8.

    Article  PubMed  CAS  Google Scholar 

  76. Cao DS, Premkumar LS. Activation of TRPV4 by direct mechanical force. Neurosci Abst. 2008.

  77. Hartmannsgruber V et al. Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS ONE. 2007;2:e827.

    Article  PubMed  CAS  Google Scholar 

  78. Tabuchi K et al. Hearing impairment in TRPV4 knockout mice. Neurosci Lett. 2005;382:304–8.

    Article  PubMed  CAS  Google Scholar 

  79. Jaquemar D, Schenker T, Trueb B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem. 1999;274:7325–33.

    Article  PubMed  CAS  Google Scholar 

  80. Bandell M et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 2004;41:849–57.

    Article  PubMed  CAS  Google Scholar 

  81. Bautista DM et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci USA. 2005;102:12248–52.

    Article  PubMed  CAS  Google Scholar 

  82. Hinman A et al. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci USA. 2006;103:19564–8.

    Article  PubMed  CAS  Google Scholar 

  83. Macpherson LJ et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature. 2007;445:541–5.

    Article  PubMed  CAS  Google Scholar 

  84. Story GM. The emerging role of TRP channels in mechanisms of temperature and pain sensation. Curr Neuropharmacol. 2006;4:183–96.

    Article  PubMed  CAS  Google Scholar 

  85. Bevan S, Andersson DA. TRP channel antagonists for pain—opportunities beyond TRPV1. Curr Opin Investig Drugs. 2009;10:655–63.

    PubMed  CAS  Google Scholar 

  86. Tracey WD et al. Painless, a Drosophila gene essential for nociception. Cell. 2003;113:261–73.

    Article  PubMed  CAS  Google Scholar 

  87. Andersson DA et al. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci. 2008;28:2485–94.

    Article  PubMed  CAS  Google Scholar 

  88. Kwan KY et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron. 2006;50:277–89.

    Article  PubMed  CAS  Google Scholar 

  89. Bautista DM et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006;124:1269–82.

    Article  PubMed  CAS  Google Scholar 

  90. Obata K et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest. 2005;115:2393–401.

    Article  PubMed  CAS  Google Scholar 

  91. Katsura H et al. Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp Neurol. 2006;200:112–23.

    PubMed  CAS  Google Scholar 

  92. Kerstein PC, del CD, Moran MM, Stucky CL. Pharmacological blockade of TRPA1 inhibits mechanical firing in nociceptors. Mol Pain. 2009;5:19.

    Article  PubMed  CAS  Google Scholar 

  93. Kwan KY, Glazer JM, Corey DP, Rice FL, Stucky CL. TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci. 2009;29:4808–19.

    Article  PubMed  CAS  Google Scholar 

  94. Karai L et al. Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control. J Clin Invest. 2004;113:1344–52.

    PubMed  CAS  Google Scholar 

  95. Brown DC et al. Physiologic and antinociceptive effects of intrathecal resiniferatoxin in a canine bone cancer model. Anesthesiology. 2005;103:1052–9.

    Article  PubMed  Google Scholar 

  96. Apostolidis A et al. Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology. 2005;65:400–5.

    Article  PubMed  Google Scholar 

  97. Gavva NR. Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1. Trends Pharmacol Sci. 2008;29:550–7.

    Article  PubMed  CAS  Google Scholar 

  98. Immke DC, Gavva NR. The TRPV1 receptor and nociception. Semin Cell Dev Biol. 2006;17:582–91.

    Article  PubMed  CAS  Google Scholar 

  99. El Kouhen R et al. A- 425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel and selective transient receptor potential type V1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid. J Pharmacol Exp Ther. 2005;314:400–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Lauren Hughes and Dr. Mahendra Bishnoi for their valuable comments and for the help with editing of the manuscript. This work was supported by grants from National Institutes of Health (NS042296, DK065742, and DA028017) and EAM award from SIUSOM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis S. Premkumar.

Additional information

Guest Editors: Rao Rapaka, Thomas Aigner, Joni Rutter, and David Shurtleff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Premkumar, L.S. Targeting TRPV1 as an Alternative Approach to Narcotic Analgesics to Treat Chronic Pain Conditions. AAPS J 12, 361–370 (2010). https://doi.org/10.1208/s12248-010-9196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-010-9196-y

Key words

Navigation