Skip to main content

Advertisement

Log in

Model system to study classical nuclear export signals

  • Published:
AAPS PharmSci Aims and scope Submit manuscript

Abstract

Signal-mediated protein transport through the nuclear pore complex is of considerable interest in the field of molecular pharmaceutics. Nuclear localization signals can be used to target genes/antisense delivery systems to the nucleus Studying nuclear export is useful in enhancing the expression and the efficiency of action, of these therapeutic agents. The mechanism of nuclear import has been well studied and most of the proteins participating in this mechanism have been identified. The subject of nuclear export is still in the initial stages and there is a considerable amount of uncertainty in this area. Two main export receptors identified so far are Exportin 1 (Crm1) and Calreticulin. Crm1 recognizes certain leucine-rich amino acid sequences in the proteins it exports called classical nuclear export signals. This paper describes a model system to study, identify, and establish these classical nuclear export signals using green fluorescent protein (GFP). Two putative export signals in the human progesterone receptor (PR) and the strongest nuclear export signal known (from mitogen activated protein kinase kinase [MAPKK]) were studied using this model system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bremner KH, Seymour LW, Pouton CW. Hamessing nuclear localization pathways for transgene delivery. Curr Opin Mol Ther. 2001;3:170–177.

    CAS  PubMed  Google Scholar 

  2. Zanta MA, Belguise-Valladier P, Behr JP. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci U S A. 1999;96:91–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ma H, Diamond SL. Nonviral gene therapy and its delivery systems. Curr Pharm Biotechnol. 2001;2:1–17.

    Article  CAS  PubMed  Google Scholar 

  4. Meunier L, Mayer R, Monsigny M, Roche AC. The nuclear export signal-dependent localization of oligonucleopeptides enhances the inhibition of the protein expression from a gene transcribed in cytosol. Nucleic Acids Res. 1999;27:2730–2736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stoffler D, Fahrenkrog B, Aebi U. The nuclear pore complex: from molecular architecture to functional dynamics. Curr Opin Cell Biol. 1999;11:391–401.

    Article  CAS  PubMed  Google Scholar 

  6. Kiseleva E, Goldberg MW, Cronshaw J, Allen TD. The nuclear pore complex: structure, function, and dynamics. Crit Rev Eukaryot Gene Expr. 2000;10:101–112.

    Article  CAS  PubMed  Google Scholar 

  7. Yoneda Y. Nucleocytoplasmic protein traffic and its significance to cell function. Genes Cells. 2000;5:777–787.

    Article  CAS  PubMed  Google Scholar 

  8. Macara IG. Transport into and out of the nucleus. Microbiol Mol Biol Rev. 2001;65:570–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pruschy M, Ju Y, Spitz L, Carafoli E, Goldfarb DS. Facillitated nuclear transport of calmodulin in tissue culture cells. J Cell Biol. 1994;127:1527–1536.

    Article  CAS  PubMed  Google Scholar 

  10. Alberts DB, Lewis J, Raff M, Roberts K, Watson JD. Molecular Biology of the Cell. 2nd ed. New York, NY: Garland Publishing Inc; 1989.

    Google Scholar 

  11. Oxender DL, Quay S. Binding proteins and membrane transport. Ann NY Acad Sci. 1975;264:358–372.

    Article  CAS  PubMed  Google Scholar 

  12. Talcott B, Moore MS. Getting across the nuclear pore complex. Trends Cell Biol. 1999;9:312–318.

    Article  CAS  PubMed  Google Scholar 

  13. Htun H, Barsony J, Renyi I, Gould DL, Hager GL. Visualization of glucocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera. Proc Natl Acad Sci U S A. 1996;93:4845–4850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalderon D, Roberts BL, Richardson WD, Smith AE. A short amino acid sequence able to specify nuclear location. Cell. 1984;39:499–509.

    Article  CAS  PubMed  Google Scholar 

  15. Robbins J, Dilworth SM, Laskey RA, Dingwall C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell. 1991;64:615–623.

    Article  CAS  PubMed  Google Scholar 

  16. Bogerd HP, Fridell RA, Benson RE, Hua J, Cullen BR. Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol Cell Biol. 1996;16:4207–4214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ikuta T, Eguchi H, Tachibana T, Yoneda Y, Kawajiri K. Nuclear localization and export signals of the human aryl hydrocarbon receptor. J Biol Chem. 1998;273:2895–2904.

    Article  CAS  PubMed  Google Scholar 

  18. Mattaj IW, Englmeier L. Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem. 1998;67:265–306.

    Article  CAS  PubMed  Google Scholar 

  19. Baumann CT, Lim CS, Hager GL. Simultaneous visualization of the yellow and green forms of the green fluorescent protein in living cells. J Histochem Cytochem. 1998;46:1073–1076.

    Article  CAS  PubMed  Google Scholar 

  20. Tsien RY. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544.

    Article  CAS  PubMed  Google Scholar 

  21. Patterson GH KS, Sharif WD, Kain SR, Piston DW. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J. 1997;73:2782–2790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McKenna NJ, Lanz RB, O'Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev. 1999;20:321–344.

    CAS  PubMed  Google Scholar 

  23. Defranco DB, Madan AP, Tang Y, Chandran UR, Xiao N, Yang J. Nucleocytoplasmic shuttling of steroid receptors. Vitam Horm. 1995;51:315–338.

    Article  CAS  PubMed  Google Scholar 

  24. Ostrowski MC R-FH, Wolford RG, Berard DS, Hager GL. Glucocorticoid regulation of transcription at an amplified, episomal promoter. Mol Cell Biol. 1983;11:2045–2057.

    Article  Google Scholar 

  25. Henderson BR, Eleftheriou A. A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export signals. Exp Cell Res. 2000;256:213–224.

    Article  CAS  PubMed  Google Scholar 

  26. Holaska JM, Black BE, Love DC, Hanover JA, Leszyk J, Paschal BM. Calreticulin is a receptor for nuclear export. J Cell Biol. 2001;152:127–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol S. Lim.

Additional information

Published: September 26, 2002

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanwal, C., Li, H. & Lim, C.S. Model system to study classical nuclear export signals. AAPS J 4, 18 (2002). https://doi.org/10.1208/ps040318

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/ps040318

Key words

Navigation