Skip to main content
Log in

A Comparative Investigation of the Ability of Various Aptamer-Functionalized Drug Nanocarriers to Induce Selective Apoptosis in Neoplastic Hepatocytes: In Vitro and In Vivo Outcome

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Aptamers offer a significant promise to target various cancers including hepatocellular carcinoma (HCC), for their high affinity and ability to reach the target site(s), non-immunogenicity, and low cost. The targeting ability to neoplastic hepatocytes by the aptamer, TLS 9a with phosphorothioate backbone modification (designated as L5), has not been explored yet. Hence, we investigated the comparative potential of L5 with some other previously reported liver cancer cell-specific aptamers, conjugated on the surface of drug-nanocarriers. Various in vitro studies such as cytotoxicity, in vitro cellular uptake, cell cycle analysis, and investigations related to apoptosis were performed. In vivo studies carried out here include macroscopic and microscopic hepatic alterations in chemically induced hepatocarcinogenesis in rats, upon experimental treatments. The outcome of the investigations revealed that L5-functionalized drug-nanocarrier (PTX-NPL5) had the highest apoptotic potential compared with the other aptamer-conjugated experimental formulations. Further, its maximum internalization by neoplastic hepatocytes and minimum internalization by normal hepatocytes indicate that it had the potential to preferentially target the neoplastic hepatocytes. Data of in vivo studies revealed that PTX-NPL5 reduced tumor incidences and tumor progress. Superior potency of PTX-NPL5 may be due to the maximum affinity of L5 towards neoplastic hepatocytes resulting in maximum permeation of drug-nanocarrier in them. An effective site-specific targeting of neoplastic hepatocytes can be achieved by L5 for preferential delivery of therapeutics. Further, investigations are needed to identify the target protein(s) on neoplastic hepatocytes responsible for ligand-receptor interaction of L5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nandennavar MI, Karpurmath SV, Mandakalatur G, Prasad AE. Clinical profile of hepatocellular carcinoma and experience with sorafenib from a tertiary cancer centre in Southern India. Int J Res Med Sci. 2017;5(2):379-383.dx.https://doi.org/10.18203/2320-6012.ijrms20170039

  2. Thillai K, Ross P, Sarker PD. Molecularly targeted therapy for advanced hepatocellular carcinoma - a drug development crisis? World J Gastrointest Oncol. 2016;8(2):173–85. https://doi.org/10.4251/wjgo.v8.i2.173.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li M, Zhang W, Wang B, Gao Y, Song Z, Zheng QC. Ligand-based targeted therapy: a novel strategy for hepatocellular carcinoma. Int J Nanomedicine. 2016;11:5645–69.

    Article  CAS  Google Scholar 

  4. Ladju RB, Pascut D, Massi MN, Tiribelli C, Sukowat CHC. Aptamer: a potential oligonucleotide nanomedicine in the diagnosis and treatment of hepatocellular carcinoma. Oncotarget. 2018;9(2):2951–61. https://doi.org/10.18632/oncotarget.23359.

    Article  PubMed  Google Scholar 

  5. Galun D, Srdic-Rajic T, Bogdanovic A, Loncar Z, Zuvela M. Targeted therapy and personalized medicine in hepatocellular carcinoma: drug resistance, mechanisms, and treatment strategies. J Heptocell Carcinoma. 2017;4:93–103. https://doi.org/10.2147/JHC.S106529.

    Article  CAS  Google Scholar 

  6. Mohamed NK, Hamad MA, Hafez MZE, Wooley KL, Elsabahy M. Nanomedicine in management of hepatocellular carcinoma: challenges and opportunities. Int J Cancer. 2017;140(7):1475–84. https://doi.org/10.1002/ijc.30517.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Ng HLH, Lu A, Lin C, Zhou L, Lin G, et al. Drug delivery system targeting advanced hepatocellular carcinoma: current and future. Nanomedicine. 2016;12(4):853–69. https://doi.org/10.1016/j.nano.2015.12.381.

    Article  CAS  PubMed  Google Scholar 

  8. Sun H, Zhu X, Liu PY, Rosato RR, Tan W, Zu Y. Oligonucleotide aptamers: new tool for targeted chemotherapy Mol Ther Nucleic Acids2014;5(3):e182. doi: https://doi.org/10.1038/mtna.2014.32.

  9. Dong L, Zhou H, Zhao M, Gao X, Liu Y, Liu D, et al. Phosphorothioate-modified AP613-1 specifically target GPC3 when used for hepatocellular carcinoma imaging. Mol Ther Nucleic Acids. 2018;13:376–86. https://doi.org/10.1016/j.omtn.2018.09.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mandal D, Shaw TK, Dey G, Pal MM, Mukherjee B, Bandyopadhyay AK, et al. Preferential hepatic uptake of paclitaxel-loaded poly-(D-L-lactide-co-glycolide) nanoparticles — a possibility for hepatic drug targeting: pharmacokinetics and biodistribution. Int J Biol Macromol. 2018;112:818–30. https://doi.org/10.1016/j.ijbiomac.2018.02.021.

    Article  CAS  PubMed  Google Scholar 

  11. Bhattacharya S, Mondal L, Mukherjee B, Dutta L, Ehsan I, Debnath MC, et al. Apigenin loaded nanoparticle delayed development of hepatocellular carcinoma in rats. Nanomedicine. 2018;14:1905–17. https://doi.org/10.1016/j.nano.2018.05.011.

    Article  CAS  PubMed  Google Scholar 

  12. Mukherjee B, Ghosh S, Das T, Doloi M. Characterization of insulin-like-growth factor II (IGF II) mRNA positive hepatic altered foci and IGF II expression in hepatocellular carcinoma during diethylnitrosamine-induced hepatocarcinogenesis in rats. J Carcinog. 2005;4:12. https://doi.org/10.1186/1477-3163-4-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghosh MK, Patra F, Ghosh S, Hossain CM, Mukherjee B. Antisense oligonucleotides directed against insulin-like growth factor-II messenger ribonucleic acids delay the progress of rat hepatocarcinogenesis. J Carcinog. 2014;13(2):1–10.

    CAS  Google Scholar 

  14. Dey NS, Mukherjee B, Maji R, Satapathy BS. Development of linker-conjugated nanosize lipid vesicles: a strategy for cell selective treatment in breast cancer. Curr Cancer Drug Targets. 2016;16(4):357–72. https://doi.org/10.2174/1568009616666151106120606.

    Article  CAS  PubMed  Google Scholar 

  15. Priyadarshini K, Keerthi AU. Paclitaxel against cancer: a short review. Med Chem. 2012;2:139–41. https://doi.org/10.4172/2161-0444.1000130.

    Article  CAS  Google Scholar 

  16. Nandi D, Besra SE, Vedasiromoni JR, Giri VS, Rana P, Jaisankar P. Anti-leukemic activity of Wattakakavolubilis leaf extract against human myeloid leukemia cell lines. J Ethnopharmacol. 2012;144(3):466–73. https://doi.org/10.1016/j.jep.2012.08.021.

    Article  CAS  PubMed  Google Scholar 

  17. Paul A, Das S, Das J, Samadder A, Khuda-Bukhsh AR. Cytotoxicity and apoptotic signaling cascade induced by chelidione-loaded PLGA nanoparticles in HepG2 cells in vitro and bioavailability of nano-chelidione in mice. Toxicol Lett. 2013;222(1):10–22. https://doi.org/10.1016/j.toxlet.2013.07.006.

    Article  CAS  PubMed  Google Scholar 

  18. Baskic D, Popovic S, Ristic P, Arsenijevic NN. Analysis of cycloheximide-induced apoptosis in human leukocytes: fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol Int. 2006;30(11):924–32. https://doi.org/10.1016/j.cellbi.2006.06.016.

    Article  CAS  PubMed  Google Scholar 

  19. Liu K, Liu PC, Liu R, Wu X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monit Basic Res. 2015;9(21):15–20. https://doi.org/10.12659/MSMBR.893327.

    Article  CAS  Google Scholar 

  20. Chakraborty B, Dutta D, Mukherjee S, Das S, Maiti NC, Das P, et al. Synthesis and biological evaluation of a novel betulinic acid derivative as an inducer of apoptosis in human colon carcinoma cells (HT-29). Eur J Med Chem. 2015;18(102):93–105. https://doi.org/10.1016/j.ejmech.2015.07.035.

    Article  CAS  Google Scholar 

  21. Dutta D, Paul B, Mukherjee B, Mondal L, Sen S, Chowdhury C, et al. Nanoencapsulated betulinic acid distinctively improves colorectal carcinoma in vitro and in vivo. Sci Rep. 2019;9:11506. https://doi.org/10.1038/s41598-019-47743-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saneja A, Kumar R, Singh A, Dubey DR, Mintoo MJ, Singh G, et al. Development and evaluation of long-circulating nanoparticles loaded with betulinic acid for improved anti-tumor efficacy. Int J Pharm. 2017;531(1):153–66. https://doi.org/10.1016/j.ijpharm.2017.08.076.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang W, Hu X, Shen Q, Xing D. Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrugnanoreactors can enhance chemotherapy. Nat Commun. 2019;10(1):1704–14. https://doi.org/10.1038/s41467-019-09566-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Esteve MA, Carre M, Brauger D. Microtubules in apoptosis induction: are they necessary? Curr Cancer Drug Targets. 2007;7(8):713–29. https://doi.org/10.2174/156800907783220480.

    Article  CAS  PubMed  Google Scholar 

  25. Shangguan D, Meng L, Cao ZC, Xiao Z, Fang X, Yi L, et al. Identification of liver cancer-specific aptamers using whole live cells. Annal. Chem. 2008;80(3):721–8. https://doi.org/10.1021/ac701962v.

    Article  CAS  Google Scholar 

  26. Trinh TL, Zhu G, Xiao X, Puszyk W, Sefah K, Wu Q, et al. Synthetic aptamer DNA-adduct for targeted liver cancer therapy. PLoS One. 2015;10(11):e0136673. https://doi.org/10.1371/journal.pone.0136673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Duhem N, Danhier F, Preat V. Vitamin e-based nanomedicines for anti-cancer drug delivery. J Control Release. 2014;28(182):33–44. https://doi.org/10.1016/j.jconrel.2014.03.009.

    Article  CAS  Google Scholar 

  28. Mondal L, Mukherjee B, Das K, Bhattacharya S, Dutta D, Chakraborty S, et al. CD-340 functionalized doxorubicin-loaded nanoparticle induces apoptosis and reduces tumor volume along with drug-related cardiotoxicity in mice. Int J Nanomedicine. 2019;29(14):9307. https://doi.org/10.2147/IJN.S220740.

    Article  Google Scholar 

  29. Borel F, Lacroix FB, Margolis RL. Prolonged arrest of mammalian cells at the G1/S boundary results in permanent S phase stasis. J Cell Sci. 2002;115(14):2829–38.

    CAS  PubMed  Google Scholar 

  30. XuY XZ, Hyunjin J, Yu MS, Dong HP, Song Y, et al. Novel bispidinone analog induces S-phase cell cycle arrest and apoptosis in HeLa human cervical carcinoma cells. Oncol Rep. 2014;33(3):1526–32. https://doi.org/10.3892/or.2015.3722.

    Article  CAS  Google Scholar 

  31. Bannasch P. Glycogenotic hepatocellular carcinoma with glycogen-ground-glass hepatocytes: a heuristically highly relevant phenotype. World J Gastroenterol. 2012;18(46):6701–8. https://doi.org/10.3748/wjg.v18.i46.6701.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bidkhori G, Benfeitas R, Klevstig M, Zhang C, Nielsen J, Uhlen M, et al. Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes. Proc Natl Acad Sci U S A. 2018;115(50):E11874–83. https://doi.org/10.1073/pnas.1807305115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McLoughlin MR, Orlicky DJ, Prigge JR, Krishna P, Talago EA, Cavigli IR, et al. TrxR1, Gsr, and oxidative stress determine hepatocellular carcinoma malignancy. Proc Natl Acad Sci U S A. 2019;116(23):11408–17. https://doi.org/10.1073/pnas.1903244116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863(12):2977–92. https://doi.org/10.1016/j.bbamcr.2016.09.012.

    Article  CAS  PubMed  Google Scholar 

  35. Indran IR, Tufo G, Pervaiz S, Brenner C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta. 2011;1807(6):735–45. https://doi.org/10.1016/j.bbabio.2011.03.010.

    Article  CAS  PubMed  Google Scholar 

  36. Rovini A, Savry A, Braguer D, Carre M. Microtubule-targeted agents: when mitochondria becomes essential to chemotherapy. Biochim Biophys Acta. 2011;1807(6):679–98. https://doi.org/10.1016/j.bbabio.2011.01.001.

    Article  CAS  PubMed  Google Scholar 

  37. Sun ZL, Dong JL, Wu J. Juglanin induces apoptosis and autophagy in human breast cancer progression via ROS/JNK promotion. Biomed Pharmacother. 2017;85:303–12. https://doi.org/10.1016/j.biopha.2016.11.030.

    Article  CAS  PubMed  Google Scholar 

  38. Bates PJ, Reyes-Reyes EM, Malik MT, Murphy EM, O'Toole MG, Trent JO. G-quadruplex oligonucleotide AS1411 as a cancer targeting agent: uses and mechanisms. Biochim Biophys Acta. 2017;1861(5):1414–28. https://doi.org/10.1016/j.bbagen.2016.12.015.

    Article  CAS  Google Scholar 

  39. Li F, Lu J, Liu J, Liang C, Wang M, Wang L, et al. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor specific targeting in ovarian cancer. Nat Commun. 2017;18:1390–14. https://doi.org/10.1038/s41467-017-01565-6.

    Article  CAS  Google Scholar 

  40. Newell P, Villanueva A, Friedman SL, Koike K, Llovet JM. Experimental models for hepatocellular carcinoma 2008;48(5):858–879. doi: https://doi.org/10.1016/j.jhep.2008.01.008.

Download references

Acknowledgments

We thank the Director, CSIR-IICB, Kolkata, for providing some facilities for successful completion of research. Authors are also thankful to Mrs. Banasri Das, Mrs. Debolina Chakraborty, Mr. Tanmoy Doloi, Mr. T. Muruganandan, and Mr. Binayak Pal (staff, Central Instrumentation Facilities, CSIR-IICB, Kolkata) for their useful help during the study.

Funding

Financial assistance for the work was provided by the University Grants Commission (UGC), New Delhi, India, under the scheme [UPE-II (Natural products and Drug Delivery)], ref. no. [1–10/2012(NS/PE)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Mukherjee.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Dlie, Z.Y., Mukherjee, B. et al. A Comparative Investigation of the Ability of Various Aptamer-Functionalized Drug Nanocarriers to Induce Selective Apoptosis in Neoplastic Hepatocytes: In Vitro and In Vivo Outcome. AAPS PharmSciTech 21, 89 (2020). https://doi.org/10.1208/s12249-020-1629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-1629-z

Key Words

Navigation