Skip to main content

Advertisement

Log in

Microemulsion and Microporation Effects on the Genistein Permeation Across Dermatomed Human Skin

  • Research Article
  • Theme: Advances in Topical Delivery of Drugs
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study reports the microemulsion (ME) effects on the permeation of genistein across normal (intact) and microporated human skin. The genistein formulation was optimized to know the stable ME region in the pseudo-ternary phase diagrams and to maximize the skin permeation and retention of genistein. The phase diagrams were constructed with different oil phases, surfactants, and their combinations. The influence of formulation factors on the permeation through intact and microporated human skin was determined. Based on its wide ME region, as well as permeation enhancement effects, oleic acid was used as an oil phase with various surfactants and co-surfactants to further maximize the ME region and skin permeation. The water content in the formulation played an important role in the ME stability, droplet size, and flux of genistein. For example, the ME with 20% water exhibited 4- and 9-fold higher flux as compared to the ME base (no water) and aqueous suspension, respectively. Likewise, this formulation had demonstrated 2- and 4-fold higher skin retention as compared to the ME base (no water) and aqueous suspension, respectively. The skin microporation did not significantly increase the skin permeation of genistein from ME formulations. The ME composition, water content, and to a lesser extent the ME particle size played a role in improving the skin permeation and retention of genistein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Piovesan AC, Soares Júnior JM, Mosquette R, Simões MD, Simões RD, Baracat EC. Morphological and molecular effects of isoflavone and estrogens on the rat mammary gland. Revista Brasileira de Ginecologia e Obstetrícia. 2005;27(4):204–9.

    Article  Google Scholar 

  2. Brand RM, Jendrzejewski JL. Topical treatment with (−)-epigallocatechin-3-gallate and genistein after a single UV exposure can reduce skin damage. J Dermatol Sci. 2008;50(1):69–72. https://doi.org/10.1016/j.jdermsci.2007.11.008.

    Article  CAS  PubMed  Google Scholar 

  3. Vera JC, Reyes AM, Velasquez F, Rivas CI, Zhang RH, Strobel P, et al. Direct inhibition of the hexose transporter GLUT1 by tyrosine kinase inhibitors. Biochemistry. 2001;40(3):777–90. https://doi.org/10.1021/bi001660j.

    Article  CAS  PubMed  Google Scholar 

  4. Wei H, Zhang X, Wang Y, Lebwohl M. Inhibition of ultraviolet light-induced oxidative events in the skin and internal organs of hairless mice by isoflavone genistein. Cancer Lett. 2002;185(1):21–9. https://doi.org/10.1016/s0304-3835(02)00240-9.

    Article  CAS  PubMed  Google Scholar 

  5. Widyarini S, Husband AJ, Reeve VE. Protective effect of the isoflavonoid equol against hairless mouse skin carcinogenesis induced by UV radiation alone or with a chemical cocarcinogen. Photochem Photobiol. 2005;81(1):32–7. https://doi.org/10.1562/2004-06-02-ra-183.1.

    Article  CAS  PubMed  Google Scholar 

  6. Shyong EQ, Lu Y, Lazinsky A, Saladi RN, Phelps RG, Austin LM, et al. Effects of the isoflavone 4′, 5, 7-trihydroxyisoflavone (genistein) on psoralen plus ultraviolet A radiation (PUVA)-induced photodamage. Carcinogenesis. 2002;23(2):317–21. https://doi.org/10.1093/carcin/23.2.317.

    Article  CAS  PubMed  Google Scholar 

  7. Peak MJ, Peak JG. Solar-ultraviolet-induced damage to DNA. Photo-Dermatology. 1989;6(1):1–5.

    CAS  PubMed  Google Scholar 

  8. Beehler BC, Przybyszewski J, Box HB, Kulesz-Martin MF. Formation of 8-hydroxydeoxyguanosine within DNA of mouse keratinocytes exposed in culture to UVB and H2O2. Carcinogenesis. 1992;13(11):2003–7. https://doi.org/10.1093/carcin/13.11.2003.

    Article  CAS  PubMed  Google Scholar 

  9. Kim SY, Na YJ, Kim D, Kim Y, Kim HM, Hwang SH, et al. Development of estimation methods of skin oxidation and evaluation of anti-oxidative effects of genistein in topical formulations. The Korean Journal of Physiology & Pharmacology. 2012;16(3):205–9. https://doi.org/10.4196/kjpp.2012.16.3.205.

    Article  CAS  Google Scholar 

  10. Foti P, Erba D, Riso P, Spadafranca A, Criscuoli F, Testolin G. Comparison between daidzein and genistein antioxidant activity in primary and cancer lymphocytes. Arch Biochem Biophys. 2005;433(2):421–7. https://doi.org/10.1016/j.abb.2004.10.008.

    Article  CAS  PubMed  Google Scholar 

  11. Pavese JM, Farmer RL, Bergan RC. Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev. 2010;29(3):465–82. https://doi.org/10.1007/s10555-010-9238-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chadha G, Sathigari S, Parsons DL, Jayachandra BR. In vitro percutaneous absorption of genistein from topical gels through human skin. Drug Dev Ind Pharm. 2011;37(5):498–505. https://doi.org/10.3109/03639045.2010.525238.

    Article  CAS  PubMed  Google Scholar 

  13. Silva AP, Nunes BR, De Oliveira MC, Koester LS, Mayorga P, Bassani VL, et al. Development of topical nanoemulsions containing the isoflavone genistein. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2009;64(1):32–5. https://doi.org/10.1691/ph.2009.8150.

    Article  CAS  Google Scholar 

  14. Del Gaudio P, Russo P, Dorado RR, Sansone F, Mencherini T, Gasparri F, et al. Submicrometric hypromellose acetate succinate particles as carrier for soy isoflavones extract with improved skin penetration performance. Carbohydr Polym. 2017;165:22–9. https://doi.org/10.1016/j.carbpol.2017.02.025.

    Article  CAS  PubMed  Google Scholar 

  15. Kang KH, Kang MJ, Lee J, Choi YW. Influence of liposome type and skin model on skin permeation and accumulation properties of genistein. J Dispers Sci Technol. 2010;31(8):1061–6. https://doi.org/10.1080/01932690903224813.

    Article  CAS  Google Scholar 

  16. Kitagawa S, Inoue K, Teraoka R, Morita SY. Enhanced skin delivery of genistein and other two isoflavones by microemulsion and prevention against UV irradiation-induced erythema formation. Chem Pharm Bull. 2010;58(3):398–401. https://doi.org/10.1248/cpb.58.398.

    Article  CAS  Google Scholar 

  17. Huang ZR, Hung CF, Lin YK, Fang JY. In vitro and in vivo evaluation of topical delivery and potential dermal use of soy isoflavones genistein and daidzein. Int J Pharm. 2008;364(1):36–44. https://doi.org/10.1016/j.ijpharm.2008.08.002.

    Article  CAS  PubMed  Google Scholar 

  18. Moore JO, Wang Y, Stebbins WG, Gao D, Zhou X, Phelps R, et al. Photoprotective effect of isoflavone genistein on ultraviolet B-induced pyrimidine dimer formation and PCNA expression in human reconstituted skin and its implications in dermatology and prevention of cutaneous carcinogenesis. Carcinogenesis. 2006;27(8):1627–35. https://doi.org/10.1093/carcin/bgi367.

    Article  CAS  PubMed  Google Scholar 

  19. Andrade LM, de Fátima RC, Maione-Silva L, Anjos JL, Alonso A, Serpa RC, et al. Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. Eur J Pharm Biopharm. 2014;88(1):40–7. https://doi.org/10.1016/j.ejpb.2014.04.015.

    Article  CAS  PubMed  Google Scholar 

  20. Busby MG, Jeffcoat AR, Bloedon LT, Koch MA, Black T, Dix KJ, et al. Clinical characteristics and pharmacokinetics of purified soy isoflavones: single-dose administration to healthy men. Am J Clin Nutr. 2002;75(1):126–36. https://doi.org/10.1093/ajcn/75.1.126.

    Article  CAS  PubMed  Google Scholar 

  21. Rangsimawong W, Wattanasri P, Tonglairoum P, Akkaramongkolporn P, Rojanarata T, Ngawhirunpat T, et al. Development of microemulsions and microemulgels for enhancing transdermal delivery of Kaempferia parviflora extract. AAPS PharmSciTech. 2018;23:2058–67. https://doi.org/10.1208/s12249-018-1003-6.

    Article  CAS  Google Scholar 

  22. Tabosa MA, de Andrade AR, Lira AA, Sarmento VH, de Santana DP, Leal LB. Microemulsion formulations for the transdermal delivery of lapachol. AAPS PharmSciTech. 2018;19(4):1837–46. https://doi.org/10.1208/s12249-018-0995-2.

    Article  CAS  PubMed  Google Scholar 

  23. Lv X, Liu T, Ma H, Tian Y, Li L, Li Z, et al. Preparation of essential oil-based microemulsions for improving the solubility, pH stability, photostability, and skin permeation of quercetin. AAPS PharmSciTech. 2017;18(8):3097–104. https://doi.org/10.1208/s12249-017-0798-x.

    Article  CAS  PubMed  Google Scholar 

  24. Panapisal V, Charoensri S, Tantituvanont A. Formulation of microemulsion systems for dermal delivery of silymarin. AAPS PharmSciTech. 2012;13(2):389–99. https://doi.org/10.1208/s12249-012-9762-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hashem FM, Shaker DS, Ghorab MK, Nasr M, Ismail A. Formulation, characterization, and clinical evaluation of microemulsion containing clotrimazole for topical delivery. AAPS PharmSciTech. 2011;12(3):879–86. https://doi.org/10.1208/s12249-011-9653-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kantarcı G, Özgüney I, Karasulu HY, Arzık S, Güneri T. Comparison of different water/oil microemulsions containing diclofenac sodium: preparation, characterization, release rate, and skin irritation studies. AAPS PharmSciTech. 2007;8(4):75–81. https://doi.org/10.1208/pt0804091.

    Article  PubMed Central  Google Scholar 

  27. Salerno C, Carlucci AM, Bregni C. Study of in vitro drug release and percutaneous absorption of fluconazole from topical dosage forms. AAPS PharmSciTech. 2010;11(2):986–93. https://doi.org/10.1208/s12249-010-9457-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interf Sci. 2006;123:369–85. https://doi.org/10.1016/j.cis.2006.05.014.

    Article  CAS  Google Scholar 

  29. Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev. 2002;54:S77–98. https://doi.org/10.1016/s0169-409x(02)00116-3.

    Article  CAS  PubMed  Google Scholar 

  30. Dreher F, Walde P, Walther P, Wehrli E. Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport. J Control Release. 1997;45(2):131–40. https://doi.org/10.1016/s0168-3659(96)01559-3.

    Article  CAS  Google Scholar 

  31. Qi X, Qin J, Ma N, Chou X, Wu Z. Solid self-microemulsifying dispersible tablets of celastrol: formulation development, characterization and bioavailability evaluation. Int J Pharm. 2014;472(1–2):40–7. https://doi.org/10.1016/j.ijpharm.2014.06.019.

    Article  CAS  PubMed  Google Scholar 

  32. Patel MR, Patel RB, Parikh JR, Solanki AB, Patel BG. Effect of formulation components on the in vitro permeation of microemulsion drug delivery system of fluconazole. AAPS PharmSciTech. 2009;10(3):917–23. https://doi.org/10.1208/s12249-009-9286-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kolli CS, Xiao J, Parsons DL, Babu RJ. Microneedle assisted iontophoretic transdermal delivery of prochlorperazine edisylate. Drug Dev Ind Pharm. 2012;38(5):571–6. https://doi.org/10.3109/03639045.2011.617753.

    Article  CAS  PubMed  Google Scholar 

  34. Moghadam SH, Saliaj E, Wettig SD, Dong C, Ivanova MV, Huzil JT, et al. Effect of chemical permeation enhancers on stratum corneum barrier lipid organizational structure and interferon alpha permeability. Mol Pharm. 2013;10(6):2248–60. https://doi.org/10.1021/mp300441c.

    Article  CAS  PubMed  Google Scholar 

  35. Chen L, Tan F, Wang J, Liu F. Microemulsion: a novel transdermal delivery system to facilitate skin penetration of indomethacin. Die Pharmazie. 2012;67(4):319–23. https://doi.org/10.1692/ph.2012.1150.

    Article  CAS  PubMed  Google Scholar 

  36. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2012;64:128–37. https://doi.org/10.1016/j.addr.2012.09.032.

    Article  Google Scholar 

  37. Francoeur ML, Golden GM, Potts RO. Oleic acid: its effects on stratum corneum in relation to (trans) dermal drug delivery. Pharm Res. 1990;7(6):621–7.

    Article  CAS  PubMed  Google Scholar 

  38. Ellaithy HM, El-Shaboury KM. The development of Cutina lipogels and gel microemulsion for topical administration of fluconazole. AAPS PharmSciTech. 2002;3(4):77–85. https://doi.org/10.1208/pt030435.

    Article  PubMed Central  Google Scholar 

  39. Malcolmson C, Satra C, Kantaria S, Sidhu A, Lawrence MJ. Effect of oil on the level of solubilization of testosterone propionate into nonionic oil-in-water microemulsions. J Pharm Sci. 1998;87(1):109–16. https://doi.org/10.1021/js9700863.

    Article  CAS  PubMed  Google Scholar 

  40. Berner B, Mazzenga GC, Otte JH, Steffens RJ, Juang RH, Ebert CD. Ethanol: water mutually enhanced transdermal therapeutic system II: skin permeation of ethanol and nitroglycerin. J Pharm Sci. 1989;78(5):402–7. https://doi.org/10.1002/jps.2600780512.

    Article  CAS  PubMed  Google Scholar 

  41. Sarpotdar PP, Zatz JL. Percutaneous absorption enhancement by nonionic surfactants. Drug Dev Ind Pharm. 1986;12(11–13):1625–47. https://doi.org/10.3109/03639048609042599.

    Article  CAS  Google Scholar 

  42. Sarpotdar PP, Zatz JL. Evaluation of penetration enhancement of lidocaine by nonionic surfactants through hairless mouse skin in vitro. J Pharm Sci. 1986;75(2):176–81. https://doi.org/10.1002/jps.2600750216.

    Article  CAS  PubMed  Google Scholar 

  43. Hu L, Hu Q, Yang J. Enhancement of transdermal delivery of ibuprofen using microemulsion vehicle. Iranian journal of basic medical sciences. 2014;17(10):760–6.

    PubMed  PubMed Central  Google Scholar 

  44. Pershing LK, Lambert LD, Knutson K. Mechanism of ethanol-enhanced estradiol permeation across human skin in vivo. Pharm Res. 1990;7(2):170–5.

    Article  CAS  PubMed  Google Scholar 

  45. Megrab NA, Williams AC, Barry BW. Oestradiol permeation across human skin, silastic and snake skin membranes: the effects of ethanol/water co-solvent systems. Int J Pharm. 1995;116(1):101–12. https://doi.org/10.1016/0378-5173(94)00321-u.

    Article  CAS  Google Scholar 

  46. Notman R, Anwar J. Breaching the skin barrier—insights from molecular simulation of model membranes. Adv Drug Deliv Rev. 2013;65(2):237–50. https://doi.org/10.1016/j.addr.2012.02.011.

    Article  CAS  PubMed  Google Scholar 

  47. Lane ME. Skin penetration enhancers. Int J Pharm. 2013;447(1–2):12–21. https://doi.org/10.1016/j.ijpharm.2013.02.040.

    Article  CAS  PubMed  Google Scholar 

  48. Pawar KR, Smith F, Kolli CS, Babu RJ. Effect of lipophilicity on microneedle-mediated iontophoretic transdermal delivery across human skin in vitro. J Pharm Sci. 2013;102(10):3784–91. https://doi.org/10.1002/jps.23694.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study received financial support from Auburn University Research Initiative in Cancer (AURIC) and the intramural grant program (IGP) from the Auburn University, AL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayachandra Babu.

Additional information

Guest Editor: S. Narasimha Murthy

Electronic Supplementary Material

ESM 1

(DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Annaji, M., Kurapati, S. et al. Microemulsion and Microporation Effects on the Genistein Permeation Across Dermatomed Human Skin. AAPS PharmSciTech 19, 3481–3489 (2018). https://doi.org/10.1208/s12249-018-1150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1150-9

Keywords

Navigation