Skip to main content

Advertisement

Log in

P-glycoprotein Restricts Ocular Penetration of Loperamide across the Blood-Ocular Barriers: a Comparative Study in Mdr1a Knock-out and Wild Type Sprague Dawley Rats

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The current research was undertaken to determine the existence and magnitude of P-glycoprotein (P-gp) expression on the blood-ocular barriers by studying the ocular penetration of loperamide, a specific P-gp substrate, in P-gp (Mdr1a) knock-out (KO) and wild type (WT) Sprague Dawley rats. A clear, stable, sterile solution of loperamide (1 mg/mL), for intravenous administration, was formulated and evaluated. Ocular distribution was studied in P-gp KO and WT rats following intravenous administration of loperamide (at two doses). The drug levels in plasma, aqueous humor (AH), and vitreous humor (VH) samples were determined with the aid of UHPLC-Q-TOF-MS/MS, and the AH/plasma (D AH ) and VH/plasma (D VH ) distribution ratios were estimated. Electroretinography (ERG), ultrastructural analyses, and histology studies were carried out, in both KO and WT rats, to detect any drug-induced functional and/or structural alterations in the retina. Dose-related loperamide levels were observed in the plasma of both WT and KO rats. The loperamide concentrations in the AH and VH of KO rats were significantly higher compared to that observed in the WT rats, at the lower dose. However, a marked increase in the D AH and D VH was noted in the KO rats. ERG, ultrastructure, and histology studies did not indicate any drug-induced toxic effects in the retina under the test conditions. The results from these studies demonstrate that P-gp blocks the penetration of loperamide into the ocular tissues from the systemic circulation and that the effect is more pronounced at lower plasma loperamide concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aukunuru JV, Sunkara G, Bandi N, Thoreson WB, Kompella UB. Expression of multidrug resistance-associated protein (MRP) in human retinal pigment epithelial cells and its interaction with BAPSG, a novel aldose reductase inhibitor. Pharm Res. 2001;18(5):565–72.

    Article  CAS  PubMed  Google Scholar 

  2. Kennedy BG, Mangini NJ. P-glycoprotein expression in human retinal pigment epithelium. Mol Vis. 2002;8:422–30.

    CAS  PubMed  Google Scholar 

  3. Steuer H, Jaworski A, Elger B, Kaussmann M, Keldenich J, Schneider H, et al. Functional characterization and comparison of the outer blood-retina barrier and the blood-brain barrier. Invest Ophthalmol Vis Sci. 2005;46(3):1047–53.

    Article  PubMed  Google Scholar 

  4. Cunha-Vaz JG. The blood-ocular barriers: past, present, and future. Doc Ophthalmol Adv Ophthalmol. 1997;93(1–2):149–57.

    Article  CAS  Google Scholar 

  5. Cunha-Vaz JG. The blood–retinal barriers system. Basic concepts and clinical evaluation. Exp Eye Res. 2004;78(3):715–21.

    Article  CAS  PubMed  Google Scholar 

  6. Kuno N, Fujii S. Dry age-related macular degeneration: recent progress of therapeutic approaches. Curr Mol Pharmacol. 2011;4(3):196–232.

    Article  CAS  PubMed  Google Scholar 

  7. van Soest S, Westerveld A, de Jong PT, Bleeker-Wagemakers EM, Bergen AA. Retinitis pigmentosa: defined from a molecular point of view. Surv Ophthalmol. 1999;43(4):321–34.

    Article  PubMed  Google Scholar 

  8. Nieto Montesinos R, Béduneau A, Lamprecht A, Pellequer Y. Liposomes coloaded with elacridar and tariquidar to modulate the P-glycoprotein at the blood–brain barrier. Mol Pharm. 2015;12(11):3829–38.

    Article  CAS  PubMed  Google Scholar 

  9. Gant TW, O’Connor CK, Corbitt R, Thorgeirsson U, Thorgeirsson SS. In vivo induction of liver P-glycoprotein expression by xenobiotics in monkeys. Toxicol Appl Pharmacol. 1995;133(2):269–76.

    Article  CAS  PubMed  Google Scholar 

  10. Brillault J, De Castro WV, Harnois T, Kitzis A, Olivier J-C, Couet W. P-glycoprotein-mediated transport of moxifloxacin in a Calu-3 lung epithelial cell model. Antimicrob Agents Chemother. 2009;53(4):1457–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karyekar CS, Eddington ND, Garimella TS, Gubbins PO, Dowling TC. Evaluation of P-glycoprotein-mediated renal drug interactions in an MDR1-MDCK model. Pharmacotherapy. 2003;23(4):436–42.

    Article  CAS  PubMed  Google Scholar 

  12. Fujii S, Setoguchi C, Kawazu K, Hosoya K. Impact of P-glycoprotein on blood-retinal barrier permeability: comparison of blood-aqueous humor and blood-brain barrier using mdr1a knockout rats. Invest Ophthalmol Vis Sci. 2014;55(7):4650–8.

    Article  CAS  PubMed  Google Scholar 

  13. Kajikawa T, Mishima HK, Murakami T, Takano M. Role of P-glycoprotein in distribution of rhodamine 123 into aqueous humor in rabbits. Curr Eye Res. 1999;18(3):240–6.

    Article  CAS  PubMed  Google Scholar 

  14. Duvvuri S, Gandhi MD, Mitra AK. Effect of P-glycoprotein on the ocular disposition of a model substrate, quinidine. Curr Eye Res. 2003;27(6):345–53.

    Article  PubMed  Google Scholar 

  15. Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5(5):567–81.

    Article  CAS  PubMed  Google Scholar 

  16. Hosoya KI, Tomi M. Advances in the cell biology of transport via the inner blood-retinal barrier: establishment of cell lines and transport functions. Biol Pharm Bull. 2005;28(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  17. Sugiyama D, Kusuhara H, Taniguchi H, Ishikawa S, Nozaki Y, Aburatani H, et al. Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood-brain barrier: high affinity transporter for thyroxine. J Biol Chem. 2003;278(44):43489–95.

    Article  CAS  PubMed  Google Scholar 

  18. Akanuma S, Hirose S, Tachikawa M, Hosoya K. Localization of organic anion transporting polypeptide (Oatp) 1a4 and Oatp1c1 at the rat blood-retinal barrier. Fluids Barriers CNS. 2013;10:29.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kubo Y, Kusagawa Y, Tachikawa M, Akanuma S-I, Hosoya K-I. Involvement of a novel organic cation transporter in verapamil transport across the inner blood-retinal barrier. Pharm Res. 2013;30(3):847–56.

    Article  CAS  PubMed  Google Scholar 

  20. Gao B, Huber RD, Wenzel A, Vavricka SR, Ismair MG, Remé C, et al. Localization of organic anion transporting polypeptides in the rat and human ciliary body epithelium. Exp Eye Res. 2005;80(1):61–72.

    Article  CAS  PubMed  Google Scholar 

  21. Zamek-Gliszczynski MJ, Bedwell DW, Bao JQ, Higgins JW. Characterization of SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats using loperamide, paclitaxel, sulfasalazine, and carboxydichlorofluorescein pharmacokinetics. Drug Metab Dispos Biol Fate Chem. 2012;40(9):1825–33.

    Article  CAS  PubMed  Google Scholar 

  22. Zamek-Gliszczynski MJ, Goldstein KM, Paulman A, Baker TK, Ryan TP. Minor compensatory changes in SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats do not detract from their utility in the study of transporter-mediated pharmacokinetics. Drug Metab Dispos Biol Fate Chem. 2013;41(6):1174–8.

    Article  CAS  PubMed  Google Scholar 

  23. Chu X, Zhang Z, Yabut J, Horwitz S, Levorse J, Li X, et al. Characterization of multidrug resistance 1a/P-glycoprotein knockout rats generated by zinc finger nucleases. Mol Pharmacol. 2012;81(2):220–7.

    Article  CAS  PubMed  Google Scholar 

  24. Hippalgaonkar K, Srirangam R, Avula B, Khan IA, Majumdar S. Interaction between topically and systemically coadministered P-glycoprotein substrates/inhibitors: effect on vitreal kinetics. Drug Metab Dispos. 2010;38(10):1790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Majumdar S, Hippalgaonkar K, Srirangam R. Vitreal kinetics of quinidine in rabbits in the presence of topically coadministered P-glycoprotein substrates/modulators. Drug Metab Dispos. 2009;37(8):1718–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vasireddy V, Jablonski MM, Khan NW, Wang XF, Sahu P, Sparrow JR, et al. Elovl4 5-bp deletion knock-in mouse model for Stargardt-like macular degeneration demonstrates accumulation of ELOVL4 and lipofuscin. Exp Eye Res. 2009;89(6):905–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vasireddy V, Jablonski MM, Mandal MNA, Raz-Prag D, Wang XF, Nizol L, et al. Elovl4 5-bp-deletion knock-in mice develop progressive photoreceptor degeneration. Invest Ophthalmol Vis Sci. 2006;47(10):4558–68.

    Article  PubMed  Google Scholar 

  28. Yalkowsky SH, Rubino JT. Solubilization by cosolvents I: organic solutes in propylene glycol-water mixtures. J Pharm Sci. 1985;74(4):416–21.

    Article  CAS  PubMed  Google Scholar 

  29. Inactive Ingredient Search for Approved Drug Products. Fedral Drug Administration IIG database- 2016. Available from: https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm

  30. Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;785(2):263–75.

    Article  CAS  PubMed  Google Scholar 

  31. Bundgaard C, Jensen CJN, Garmer M. Species comparison of in vivo P-glycoprotein-mediated brain efflux using mdr1a-deficient rats and mice. Drug Metab Dispos. 2012;40(3):461–6.

    Article  CAS  PubMed  Google Scholar 

  32. Toda R, Kawazu K, Oyabu M, Miyazaki T, Kiuchi Y. Comparison of drug permeabilities across the blood-retinal barrier, blood-aqueous humor barrier, and blood-brain barrier. J Pharm Sci. 2011;100(9):3904–11.

    Article  CAS  PubMed  Google Scholar 

  33. Hosoya K, Yamamoto A, Akanuma S, Tachikawa M. Lipophilicity and transporter influence on blood-retinal barrier permeability: a comparison with blood-brain barrier permeability. Pharm Res. 2010;27(12):2715–24.

    Article  CAS  PubMed  Google Scholar 

  34. Hsiao P, Unadkat JD. P-glycoprotein-based loperamide–cyclosporine drug interaction at the rat blood–brain barrier: prediction from in vitro studies and extrapolation to humans. Mol Pharm. 2012;9(3):629–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elkiweri IA, Zhang YL, Christians U, Ng K-Y, Tissot van Patot MC, Henthorn TK. Competitive substrates for P-glycoprotein and organic anion protein transporters differentially reduce blood organ transport of fentanyl and loperamide: pharmacokinetics and pharmacodynamics in Sprague Dawley rats. Anesth Analg. 2009;108(1):149–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Husain S. Opioid receptors: methods for detection and their modes of actions in the eye. In: Opioid receptors. Humana Press, New York, NY; 2015. p. 243–251.

  37. Dortch-Carnes J, Russell KRM. Morphine-induced reduction of intraocular pressure and pupil diameter: role of nitric oxide. Pharmacology. 2006;77(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  38. Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet. 2003;42(1):59–98.

    Article  CAS  PubMed  Google Scholar 

  39. Dey S, Mitra AK. Transporters and receptors in ocular drug delivery: opportunities and challenges. Expert Opin Drug Deliv. 2005;2(2):201–4.

    Article  CAS  PubMed  Google Scholar 

  40. Someya E, Mori A, Sakamoto K, Ishii K, Nakahara T. Stimulation of μ-opioid receptors dilates retinal arterioles by neuronal nitric oxide synthase-derived nitric oxide in rats. Eur J Pharmacol. 2017;803:124–9.

    Article  CAS  PubMed  Google Scholar 

  41. Guymer R, Luthert P, Bird A. Changes in Bruch’s membrane and related structures with age. Prog Retin Eye Res. 1999;18(1):59–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Abbreviations

ABC, ATP-binding cassette; AH, Aqueous humor; BAB, Blood-aqueous barrier; BM, Bruch’s membrane; BOB, Blood-ocular barrier; BQ, Below quantification; BRB, Blood-retinal barrier; Ch, Choriocapillaris; D AH , Distribution ratio of loperamide from plasma to aqueous humor; D VH , Distribution ratio of loperamide from plasma to vitreous humor; EE, Extraction efficiency; ERG, Electroretinography; I.P., Intraperitoneal; IIG, Inactive ingredients; INL, Inner nuclear layer; IS, Inner segment; IV, intravenous; KO, Knock-out; LOD, Limit of detection; LOQ, Limit of quantification; Mdr1a, Multidrug resistance 1a gene; ONL, Outer nuclear layer; OS, Outer segment; P-gp, P-glycoprotein; PG, pigmented granules; Q-TOF, Quadrupole time of flight; RPE, Retinal pigmented epithelium; SD, Sprague Dawley; UHPLC, Ultra-high performance liquid chromatography; VH, Vitreous humor; WT, Wild type

Funding

This project was supported by the grant from the National Eye Institute, National Institutes of Health [Grant#-1R01EY022120-03]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyajit Majumdar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatke, A., Janga, K.Y., Avula, B. et al. P-glycoprotein Restricts Ocular Penetration of Loperamide across the Blood-Ocular Barriers: a Comparative Study in Mdr1a Knock-out and Wild Type Sprague Dawley Rats. AAPS PharmSciTech 19, 1662–1671 (2018). https://doi.org/10.1208/s12249-018-0979-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-0979-2

KEY WORDS

Navigation