Skip to main content

Advertisement

Log in

Tuning the Hydrophilic/Hydrophobic Balance to Control the Structure of Chitosan Films and Their Protein Release Behavior

  • Research Article
  • Theme: Recent Trends in the Development of Chitosan-Based Drug Delivery Systems
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The control over the crystallinity of chitosan and chitosan/ovalbumin films can be achieved via an appropriate balance of the hydrophilic/hydrophobic interactions during the film formation process, which then controls the release kinetics of ovalbumin. Chitosan films were prepared by solvent casting. The presence of the anhydrous allomorph can be viewed as a probe of the hydrophobic conditions at the neutralization step. The semicrystalline structure, the swelling behavior of the films, the protein/chitosan interactions, and the release behavior of the films were impacted by the DA and the film processing parameters. At low DAs, the chitosan films neutralized in the solid state corresponded to the most hydrophobic environment, inducing the crystallization of the anhydrous allomorph with and without protein. The most hydrophilic conditions, leading to the hydrated allomorph, corresponded to non-neutralized films for the highest DAs. For the non-neutralized chitosan acetate (amorphous) films, the swelling increased when the DA decreased, whereas for the neutralized chitosan films, the swelling decreased. The in vitro release of ovalbumin (model protein) from chitosan films was controlled by their swelling behavior. For fast swelling films (DA = 45%), a burst effect was observed. On the contrary, a lag time was evidenced for DA = 2.5% with a limited release of the protein. Furthermore, by blending chitosans (DA = 2.5% and 45%), the release behavior was improved by reducing the burst effect and the lag time. The secondary structure of ovalbumin was partially maintained in the solid state, and the ovalbumin was released under its native form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31(7):603–32. doi:10.1016/j.progpolymsci.2006.06.001.

    Article  CAS  Google Scholar 

  2. Kumar M. A review of chitin and chitosan applications. React Funct Polym. 2000;46(1):1–27.

    Article  CAS  Google Scholar 

  3. Sezer AD, Hatipoglu F, Cevher E, Ogurtan Z, Bas AL, Akbuga J. Chitosan film containing fucoidan as a wound dressing for dermal burn healing: preparation and in vitro/in vivo evaluation. AAPS PharmSciTech. 2007;8(2):8. doi:10.1208/pt0802039.

    Article  Google Scholar 

  4. Anaya P, Cardenas G, Lavayen V, Garcia A, O’Dwyer C. Chitosan gel film bandages: correlating structure, composition, and antimicrobial properties. J Appl Polym Sci. 2013;128(6):3939–48. doi:10.1002/app.38621.

    Article  CAS  Google Scholar 

  5. Freier T, Koh HS, Kazazian K, Shoichet MS. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials. 2005;26(29):5872–8. doi:10.1016/j.biomaterials.2005.02.033.

    Article  CAS  PubMed  Google Scholar 

  6. Hamilton V, Yuan Y, Rigney DA, Puckett AD, Ong JL, Yang Y, et al. Characterization of chitosan films and effects on fibroblast cell attachment and proliferation. J Mater Sci Mater Med. 2006;17(12):1373–81. doi:10.1007/s10856-006-0613-9.

    Article  CAS  PubMed  Google Scholar 

  7. Hamilton V, Yuan YL, Rigney DA, Chesnutt BM, Puckett AD, Ong JL, et al. Bone cell attachment and growth on well-characterized chitosan films. Polym Int. 2007;56(5):641–7. doi:10.1002/pi.2181.

    Article  CAS  Google Scholar 

  8. Puttipipatkhachorn S, Nunthanid J, Yamamoto K, Peck GE. Drug physical state and drug-polymer interaction on drug release from chitosan matrix films. J Control Release. 2001;75(1–2):143–53. doi:10.1016/s0168-3659(01)00389-3.

    Article  CAS  PubMed  Google Scholar 

  9. Campos MGN, Satsangi N, Rawls HR, Mei LHI. Chitosan cross-linked films for drug delivery application. Macromol Symp. 2009;279:169–74. doi:10.1002/masy.200950526.

    Article  CAS  Google Scholar 

  10. Dutta PK, Tripathi S, Mehrotra GK, Dutta J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009;114(4):1173–82. doi:10.1016/j.foodchem.2008.11.047.

    Article  CAS  Google Scholar 

  11. Ogawa K, Hirano S, Miyanishi T, Yui T, Watanabe T. A new polymorph of chitosan. Macromolecules. 1984;17(4):973–5. doi:10.1021/ma00134a076.

    Article  CAS  Google Scholar 

  12. Okuyama K, Noguchi K, Kanenari M, Egawa T, Osawa K, Ogawa K. Structural diversity of chitosan and its complexes. Carbohydr Polym. 2000;41(3):237–47. doi:10.1016/s0144-8617(99)00142-3.

    Article  CAS  Google Scholar 

  13. Kawada J, Yui T, Okuyama K, Ogawa K. Crystalline behavior of chitosan organic acid salts. Biosci Biotechnol Biochem. 2001;65(11):2542–7. doi:10.1271/bbb.65.2542.

    Article  CAS  PubMed  Google Scholar 

  14. Leceta I, Arana P, Guerrero P, de la Caba K. Structure-moisture sorption relation in chitosan thin films. Mater Lett. 2014;128:125–7. doi:10.1016/j.matlet.2014.04.123.

    Article  CAS  Google Scholar 

  15. Uragami T, Matsuda T, Okuno H, Miyata T. Structure of chemically-modified chitosan membranes and their characteristics of permeation and separation of aqueous-ethanol solutions. J Membr Sci. 1994;88(2–3):243–51. doi:10.1016/0376-7388(94)87010-1.

    Article  CAS  Google Scholar 

  16. Ritthidej CC, Phaechamud T, Koizumi T. Moist heat treatment on physicochemical change of chitosan salt films. Int J Pharm. 2002;232(1–2):11–22.

    Article  CAS  PubMed  Google Scholar 

  17. Park SY, Marsh KS, Rhim JW. Characteristics of different molecular weight chitosan films affected by the type of organic solvents. J Food Sci. 2002;67(1):194–7. doi:10.1111/j.1365-2621.2002.tb11382.x.

    Article  CAS  Google Scholar 

  18. Kim KM, Son JH, Kim SK, Weller CL, Hanna MA. Properties of chitosan films as a function of pH and solvent type. J Food Sci. 2006;71(3):E119–24.

    Article  CAS  Google Scholar 

  19. Focher B, Naggi A, Torri G, Cosani A, Terbojevich M. Chitosans from Euphausia superba. 2. Characterization of solid-state structure. Carbohydr Polym. 1992;18(1):43–9. doi:10.1016/0144-8617(92)90186-t.

    Article  CAS  Google Scholar 

  20. Zhang YQ, Xue CH, Xue Y, Gao RC, Zhang XL. Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr Res. 2005;340(11):1914–7. doi:10.1016/j.carres.2005.05.005.

    Article  CAS  PubMed  Google Scholar 

  21. Feng F, Liu Y, Zhao B, Hu K. Characterization of half N-acetylated chitosan powders and films. Procedia Eng. 2012;27:718–32. doi:10.1016/j.proeng.2011.12.511.

    Article  CAS  Google Scholar 

  22. Srinivasa PC, Ramesh MN, Kumar KR, Tharanathan RN. Properties of chitosan films prepared under different drying conditions. J Food Eng. 2004;63(1):79–85. doi:10.1016/s0260-8774(03)00285-1.

    Article  Google Scholar 

  23. Souza BWS, Cerqueira MA, Martins JT, Casariego A, Teixeira JA, Vicente AA. Influence of electric fields on the structure of chitosan edible coatings. Food Hydrocoll. 2010;24(4):330–5. doi:10.1016/j.foodhyd.2009.10.011.

    Article  CAS  Google Scholar 

  24. Liu M, Zhou YB, Zhang Y, Yu C, Cao SN. Preparation and structural analysis of chitosan films with and without sorbitol. Food Hydrocoll. 2013;33(2):186–91. doi:10.1016/j.foodhyd.2013.03.003.

    Article  CAS  Google Scholar 

  25. Meng QK, Heuzey MC, Carreau PJ. Hierarchical structure and physicochemical properties of plasticized chitosan. Biomacromolecules. 2014;15(4):1216–24. doi:10.1021/bm401792u.

    Article  CAS  PubMed  Google Scholar 

  26. Kam HM, Khor E, Lim LY. Storage of partially deacetylated chitosan films. J Biomed Mater Res. 1999;48(6):881–8. doi:10.1002/(sici)1097-4636(1999)48:6.

    Article  CAS  PubMed  Google Scholar 

  27. Nunthanid J, Puttipipatkhachorn S, Yamamoto K, Peck GE. Physical properties and molecular behavior of chitosan films. Drug Dev Ind Pharm. 2001;27(2):143–57. doi:10.1081/ddc-100000481.

    Article  CAS  PubMed  Google Scholar 

  28. Ren DW, Yi HF, Wang W, Ma XJ. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr Res. 2005;340(15):2403–10. doi:10.1016/j.carres.2005.07.022.

    Article  CAS  PubMed  Google Scholar 

  29. Santos C, Seabra P, Veleirinho B, Delgadillo I, da Silva JAL. Acetylation and molecular mass effects on barrier and mechanical properties of shortfin squid chitosan membranes. Eur Polym J. 2006;42(12):3277–85. doi:10.1016/j.eurpolymj.2006.09.001.

    Article  CAS  Google Scholar 

  30. Khare AR, Peppas NA. Swelling deswelling of anionic copolymer gels. Biomaterials. 1995;16(7):559–67. doi:10.1016/0142-9612(95)91130-q.

    Article  CAS  PubMed  Google Scholar 

  31. Baskar D, Kumar TSS. Effect of deacetylation time on the preparation, properties and swelling behavior of chitosan films. Carbohydr Polym. 2009;78(4):767–72. doi:10.1016/j.carbpol.2009.06.013.

    Article  CAS  Google Scholar 

  32. Le Tien C, Lacroix M, Ispas-Szabo P, Mateescu MA. N-acylated chitosan: hydrophobic matrices for controlled drug release. J Control Release. 2003;93(1):1–13. doi:10.1016/s0168-3659(03)00327-4.

    Article  PubMed  Google Scholar 

  33. Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res. 1998;15(9):1326–31.

    Article  CAS  PubMed  Google Scholar 

  34. Shu XZ, Zhu KJ. A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. Int J Pharm. 2000;201(1):51–8. doi:10.1016/S0378-5173(00)00403-8.

    Article  CAS  PubMed  Google Scholar 

  35. Noel SP, Courtney H, Bumgardner JD, Haggard WO. Chitosan films: a potential local drug delivery system for antibiotics. Clin Orthop Relat Res. 2008;466(6):1377–82. doi:10.1007/s11999-008-0228-1.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rodrigues LB, Leite HF, Yoshida MI, Saliba JB, Cunha AS, Faraco AAG. In vitro release and characterization of chitosan films as dexamethasone carrier. Int J Pharm. 2009;368(1–2):1–6. doi:10.1016/j.ijpharm.2008.09.047.

    Article  CAS  PubMed  Google Scholar 

  37. Senel S, Ikinci G, Kas S, Yousefi-Rad A, Sargon MF, Hincal AA. Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int J Pharm. 2000;193(2):197–203. doi:10.1016/s0378-5173(99)00334-8.

    Article  CAS  PubMed  Google Scholar 

  38. Hemant KSY, Shivakumar HG. Development of chitosan acetate films for transdermal delivery of propranolol hydrochloride. Trop J Pharm Res. 2010;9(2):197–203.

    Article  CAS  Google Scholar 

  39. Varshosaz J, Karimzadeh S. Development of cross-linked chitosan films for oral mucosal delivery of lidocaine. Res Pharm Sci. 2007;2(1):43–52.

    CAS  Google Scholar 

  40. Polk A, Amsden B, Deyao K, Peng T, Goosen MFA. Controlled-release of albumin from chitosan-alginate microcapsules. J Pharm Sci. 1994;83(2):178–85. doi:10.1002/jps.2600830213.

    Article  CAS  PubMed  Google Scholar 

  41. Xu YM, Du YM. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm. 2003;250(1):215–26. doi:10.1016/s0378-5173(02)00548-3.

    Article  CAS  PubMed  Google Scholar 

  42. Jarudilokkul S, Tongthammachat A, Boonamnuayvittaya V. Preparation of chitosan nanoparticles for encapsulation and release of protein. Korean J Chem Eng. 2011;28(5):1247–51. doi:10.1007/s11814-010-0485-z.

    Article  CAS  Google Scholar 

  43. Abarrategi A, Civantos A, Ramos V, Casado JVS, Lopez-Lacomba JL. Chitosan film as rhBMP2 carrier: delivery properties for bone tissue application. Biomacromolecules. 2008;9(2):711–8. doi:10.1021/bm701049g.

    Article  CAS  PubMed  Google Scholar 

  44. Colonna C, Genta I, Perugini P, Pavanetto F, Modena T, Valli M, et al. 5-Methyl-pyrrolidinone chitosan films as carriers for buccal administration of proteins. AAPS PharmSciTech. 2006;7(3):7.

    Article  Google Scholar 

  45. Giovino C, Ayensu I, Tetteh J, Boateng JS. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm. 2012;428(1–2):143–51. doi:10.1016/j.ijpharm.2012.02.035.

    Article  CAS  PubMed  Google Scholar 

  46. Notin L, Viton C, David L, Alcouffe P, Rochas C, Domard A. Morphology and mechanical properties of chitosan fibers obtained by gel-spinning: influence of the dry-jet-stretching step and ageing. Acta Biomater. 2006;2(4):387–402. doi:10.1016/j.actbio.2006.03.003.

    Article  PubMed  Google Scholar 

  47. Vachoud L, Zydowicz N, Domard A. Formation and characterisation of a physical chitin gel. Carbohydr Res. 1997;302(3–4):169–77. doi:10.1016/s0008-6215(97)00126-2.

    Article  CAS  Google Scholar 

  48. Hirai A, Odani H, Nakajima A. Determination of degree of deacetylation of chitosan by H-1-NMR spectroscopy. Polym Bull. 1991;26(1):87–94. doi:10.1007/bf00299352.

    Article  CAS  Google Scholar 

  49. Schatz C, Viton C, Delair T, Pichot C, Domard A. Typical physicochemical behaviors of chitosan in aqueous solution. Biomacromolecules. 2003;4(3):641–8. doi:10.1021/bm025724c.

    Article  CAS  PubMed  Google Scholar 

  50. Kurita K, Sannan T, Iwakura Y. Studies on chitin. 4. Evidence for formation of block and random copolymers of N-acetyl-D-glucosamine and D-glucosamine by heterogeneous and homogeneous hydrolyses. Makromol Chem-Macromol Chem Phys. 1977;178(12):3197–202.

    Article  CAS  Google Scholar 

  51. Ottoy MH, Varum KM, Smidsrod O. Compositional heterogeneity of heterogeneously deacetylated chitosans. Carbohydr Polym. 1996;29(1):17–24.

    Article  CAS  Google Scholar 

  52. Aiba S. Studies on chitosan. 2. Solution stability and reactivity of partially N-acetylated chitosan derivatives in aqueous-media. Int J Biol Macromol. 1989;11(4):249–52. doi:10.1016/0141-8130(89)90077-9.

    Article  CAS  PubMed  Google Scholar 

  53. Montembault A, Viton C, Domard A. Rheometric study of the gelation of chitosan in aqueous solution without cross-linking agent. Biomacromolecules. 2005;6(2):653–62. doi:10.1021/bm049593m.

    Article  CAS  PubMed  Google Scholar 

  54. Okuyama K, Noguchi K, Miyazawa T, Yui T, Ogawa K. Molecular and crystal structure of hydrated chitosan. Macromolecules. 1997;30(19):5849–55. doi:10.1021/ma970509n.

    Article  CAS  Google Scholar 

  55. Okuyama K, Noguchi K, Hanafusa Y, Osawa K, Ogawa K. Structural study of anhydrous tendon chitosan obtained via chitosan/acetic acid complex. Int J Biol Macromol. 1999;26(4):285–93. doi:10.1016/s0141-8130(99)00095-1.

    Article  CAS  PubMed  Google Scholar 

  56. Kasaai MR. A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydr Polym. 2008;71(4):497–508. doi:10.1016/j.carbpol.2007.07.009.

    Article  CAS  Google Scholar 

  57. Demargerandre S, Domard A. Chitosan carboxylic-acid salts in solution and in the solid-state. Carbohydr Polym. 1994;23(3):211–9. doi:10.1016/0144-8617(94)90104-x.

    Article  CAS  Google Scholar 

  58. Lamarque G, Viton C, Domard A. Comparative study of the second and third heterogeneous deacetylations of alpha- and beta-chitins in a multistep process. Biomacromolecules. 2004;5(5):1899–907. doi:10.1021/bm049780k.

    Article  CAS  PubMed  Google Scholar 

  59. Lamarque G, Viton C, Domard A. Comparative study of the first heterogeneous deacetylation of alpha- and beta-chitins in a multistep process. Biomacromolecules. 2004;5(3):992–1001. doi:10.1021/bm034498j.

    Article  CAS  PubMed  Google Scholar 

  60. Sorlier P, Viton C, Domard A. Relation between solution properties and degree of acetylation of chitosan: role of aging. Biomacromolecules. 2002;3(6):1336–42. doi:10.1021/bm0256146.

    Article  CAS  PubMed  Google Scholar 

  61. Varum KM, Ottoy MH, Smidsrod O. Water-solubility of partially N-acetylated chitosans as a function of pH: effect of chemical composition and depolymerisation. Carbohydr Polym. 1994;25(2):65–70. doi:10.1016/0144-8617(94)90140-6.

    Article  CAS  Google Scholar 

  62. Chang CT, Wu C-SC, Yang JT. Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem. 1978;91(1):13–31. doi:10.1016/0003-2697(78)90812-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dominique Gillet (Mahtani Chitosan, India) for complimentarily providing the chitosan samples. We also thank all the BM2-D2AM staff in the CRG group for the help and expertise during the SAXS/WAXS experiments at the ESRF (Figs. 3, 4, and 6) and Ruben Vera for technical assistance at the Centre de Diffraction Henry Longchambon at Université Claude Bernard Lyon 1 (Fig. 5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent David.

Additional information

Guest Editors: Claudio Salomon, Francisco Goycoolea, and Bruno Moerschbacher

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becerra, J., Sudre, G., Royaud, I. et al. Tuning the Hydrophilic/Hydrophobic Balance to Control the Structure of Chitosan Films and Their Protein Release Behavior. AAPS PharmSciTech 18, 1070–1083 (2017). https://doi.org/10.1208/s12249-016-0678-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0678-9

KEY WORDS

Navigation