Skip to main content
Log in

Advances in Metered Dose Inhaler Technology: Formulation Development

  • Review Article
  • Theme: Advances in Formulation and Device Technologies for Pulmonary Drug Delivery
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Pressurized metered dose inhalers (MDIs) are a long-standing method to treat diseases of the lung, such as asthma and chronic obstructive pulmonary disease. MDIs rely on the driving force of the propellant, which comprises the bulk of the MDI formulation, to atomize droplets containing drug and excipients, which ideally should deposit in the lungs. During the phase out of chlorofluorocarbon propellants and the introduction of more environmentally friendly hydrofluoroalkane propellants, many improvements were made to the methods of formulating for MDI drug delivery along with a greater understanding of formulation variables on product performance. This review presents a survey of challenges associated with formulating MDIs as solution or suspension products with one or more drugs, while considering the physicochemical properties of various excipients and how the addition of these excipients may impact overall product performance of the MDI. Propellants, volatile and nonvolatile cosolvents, surfactants, polymers, suspension stabilizers, and bulking agents are among the variety of excipients discussed in this review article. Furthermore, other formulation approaches, such as engineered excipient and drug-excipient particles, to deliver multiple drugs from a single MDI are also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thiel CG. From Susie's question to CFC free: an inventor's perspective on forty years of MDI development and regulation. Respir Drug Deliv. 1996;1:115–24.

    Google Scholar 

  2. Evans M, Telfer A, Smith R, Smith B, Lang G, Chen J, et al. Stratospheric sink for chlorofluoromethanes: chlorine atomc-atalysed destruction of ozone. Nature. 1974;249:811.

    Google Scholar 

  3. McDonald KJ, Martin GP. Transition to CFC-free metered dose inhalers—into the new millennium. Int J Pharm. 2000;201(1):89–107.

    CAS  PubMed  Google Scholar 

  4. Newman SP, Peart J. Pressurized metered dose inhalers. In: Newman SP, editor. Respiratory drug delivery: essential theory and practice. Richmond: Respiratory Drug Delivery Online; 2009. p. 117–216.

    Google Scholar 

  5. Stein SW, Sheth P, Hodson PD, Myrdal PB. Advances in metered dose inhaler technology: Hardware development. AAPS PharmSciTech. doi:10.1208/s12249-013-0062-y

  6. Carvalho TC, Peters JI, Williams III RO. Influence of particle size on regional lung deposition—what evidence is there? Int J Pharm. 2011;406(1):1–10.

    CAS  PubMed  Google Scholar 

  7. Smyth HDC. The influence of formulation variables on the performance of alternative propellant-driven metered dose inhalers. Adv Drug Deliv Rev. 2003;55(7):807–28.

    CAS  PubMed  Google Scholar 

  8. Vervaet C, Byron PR. Drug–surfactant–propellant interactions in HFA-formulations. Int J Pharm. 1999;186(1):13–30.

    CAS  PubMed  Google Scholar 

  9. McCulloch A. CFC and halon replacements in the environment. J Fluor Chem. 1999;100(1):163–73.

    CAS  Google Scholar 

  10. Newman SP. Principles of metered-dose inhaler design. Respir Care. 2005;50(9):1177–90.

    PubMed  Google Scholar 

  11. Wallington TJ, Schneider WF, Worsnop DR, Nielsen OJ, Sehested J, Debruyn WJ, et al. The environmental impact of CFC replacements HFCs and HCFCs. Environ Sci Technol. 1994;28(7):320A–6.

    CAS  PubMed  Google Scholar 

  12. US Environmental Protection Agency. The process of ozone depletion. Available at: http://www.epa.gov/ozone/science/process.html. Accessed July 17, 2012.

  13. United Nations Environment Programme Website. Available at: http://www.unep.org. Accessed June 5, 2013.

  14. Federal Registrar. Food and Drug Administration 21 Code of Federal Regulations (2), Use of ozone-depleting substances, Essential-use determination. 2002.

  15. Rogueda P, Lallement A, Traini D, Iliev I, Young PM. Twenty years of HFA pMDI patents: facts and perspectives. J Pharm Pharmacol. 2012;64(9):1209–16.

    CAS  PubMed  Google Scholar 

  16. Gupte AJ, Bogardus RE, inventors; Richardson Vicks Inc., assignee. Dry aerosol foam. European patent EP 247,608. 1987 Dec 2.

  17. Smith IJ. The challenge of reformulation. J Aerosol Med. 1995;8 Suppl 1:S19–27.

    PubMed  Google Scholar 

  18. Dalby RN. Prediction and assessment of flammability hazards associated with metered-dose inhalers containing flammable propellants. Pharm Res. 1992;9(5):636–42.

    CAS  PubMed  Google Scholar 

  19. Dalby RN, Byron PR, inventors; Virginia Commonwealth University, assignee. Formulations for delivery of beclomethasone diproprionate by metered dose inhalers containing no chlorofluorocarbon propellants. US patent US 5,202,110. 13 Apr 1993.

  20. Decaire B, Ghelani K, Conviser S, Sarrailh S, Le Corre B, Baron C. Materials compatibility testing of new low global warming potential propellants. Respir Drug Deliv Eur. 2011;2:281–4.

    Google Scholar 

  21. Knopeck G, Decaire B, Ghelani K. A new generation of aerosol propellants for metered dose inhalers. Respir Drug Deliv. 2010;2:591–4.

    Google Scholar 

  22. Sommerville ML, Johnson Jr CS, Cain JB, Rypacek F, Hickey AJ. Lecithin microemulsions in dimethyl ether and propane for the generation of pharmaceutical aerosols containing polar solutes. Pharm Dev Technol. 2002;7(3):273–88.

    CAS  PubMed  Google Scholar 

  23. Sommerville ML, Hickey AJ. Aerosol generation by metered-dose inhalers containing dimethyl ether/propane inverse microemulsions. AAPS PharmSciTech. 2003;4(4):455–61.

    PubMed Central  Google Scholar 

  24. Vega JC, Toneguzzo F, inventors; Laboratorio Pablo Cassera, S.R.L., assignee. Non-ozone depleting medicinal formulations with low greenhouse effect. US patent US 207,685. 16 Aug 2012.

  25. Solvay Fluoro GmbH. Solkane 227 pharma and Solkane 134a pharma Product Information. Available at: http://www.solvay-fluor.com. Accessed June 21, 2012.

  26. Hoye WL, Mogalian EM, Myrdal PB. Effects of extreme temperatures on drug delivery of albuterol sulfate hydrofluoroalkane inhalation aerosols. Am J Health-Syst Ph. 2005;62(21):2271–7.

    CAS  Google Scholar 

  27. Ross DL, Gabrio BJ. Advances in metered dose inhaler technology with the development of a chlorofluorocarbon-free drug delivery system. J Aerosol Med. 1999;12(3):151–60.

    CAS  PubMed  Google Scholar 

  28. Stein S, Stefely J. Reinventing metered dose inhalers: from poorly efficient CFC MDIs to highly efficient HFA MDIs. Drug Deliv Technol. 2003;3(1):46–51.

    CAS  Google Scholar 

  29. Stein SW, Cocks PM. Size distribution measurements from metered dose inhalers at low temperatures. Respiratory Drug Delivery Europe. 2013;2:203–8.

    Google Scholar 

  30. Williams III R, Liu J. Formulation of a protein with propellant HFA 134a for aerosol delivery. Eur J Pharm Sci. 1999;7(2):137–44.

    CAS  PubMed  Google Scholar 

  31. Leach CL. The CFC, to HFA transition and its impact on pulmonary drug development. Respir Care. 2005;50(9):1201–8.

    PubMed  Google Scholar 

  32. Reynolds JM, McNamara DP. Model for moisture transport into inhalation aerosols. Pharm Res. 1996;13(5):809–11.

    CAS  PubMed  Google Scholar 

  33. Williams R, Hu C. Investigation of moisture scavengers in pressurized metered-dose inhalers. STP Pharm Sci. 2000;10(3):243–50.

    CAS  Google Scholar 

  34. Velders GJ, Fahey DW, Daniel JS, McFarland M, Andersen SO. The large contribution of projected HFC emissions to future climate forcing. Proc Natl Acad Sci. 2009;106(27):10949–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Stein SW, Fradley G. What is the future of MDIs? Respir Drug Deliv. 2010;2:373–6.

    Google Scholar 

  36. UNEP Technology and Economic Assessment Panel. Montreal protocol on substances that deplete the ozone layer: TEAP 2010 progress report. Available at: http://www.unep.org. Accessed July 1, 2012.

  37. Ding L, Zhang J. Isobutane driven salbutamol sulfate metered dose inhaler: formulation selection and respiratory tract absorption in guinea pigs. Yao Xue Xue Bao. 2009;44(9):1040–5.

    CAS  PubMed  Google Scholar 

  38. Moore A. Final report of the safety assessment of isobutane, isopentane, n-butane, and propane. J Am Coll Toxicol. 1982;1:127–42.

    Google Scholar 

  39. Aeropres Corporation. MSDS. Available at: http://www.aeropres.com/msds. Accessed June 21, 2013.

  40. Corr S, Noakes TJ, inventors; Mexichem Amanco Holding S.A DE C.V, assignee. Compositions comprising salbutamol sulfate. World Intellectual Property Organization patent WO 2013/054135. 2013 Apr 18.

  41. Corr S, Noakes TJ, inventors; Mexichem Amanco Holding S.A DE C.V, assignee. Pharmaceutical compositions. World Intellectual Property Organization patent WO 2012/156711. 2012 Nov 22.

  42. International Programme on Chemical Safety. 1,1-difluoroethane (HFC-152a) (Screening Information Data Set – SIDs). 2008; Available at: http://inchem.org/. Accessed May 23, 2013.

  43. Vance C, Swalwell C, McIntyre IM. Deaths involving 1, 1-difluoroethane at the San Diego County Medical Examiner's Office. J Anal Toxicol. 2012;36(9):626–33.

    CAS  PubMed  Google Scholar 

  44. Ernstgård L, Sjögren B, Dekant W, Schmidt T, Johanson G. Uptake and disposition of 1,1-difluoroethane (HFC-152a) in humans. Toxicol Lett. 2012;209(1):21–9.

    PubMed  Google Scholar 

  45. Honeywell International Inc. Solstice propellant technical brochure. Available at: http://honeywell-solstice-propellants.com. Accessed June 17, 2012.

  46. Dupont. Opteon YF FAQ. Available at: http://www2.dupont.com. Accessed June 17, 2012.

  47. Leach CL, Kuehl PJ, Chand R, Ketai L, Norenberg JP, McDonald JD. Characterization of respiratory deposition of fluticasone-salmeterol hydrofluoroalkane-134a and hydrofluoroalkane-134a beclomethasone in asthmatic patients. Ann Allergy Asthma Immunol. 2012;108(3):195–200.

    CAS  PubMed  Google Scholar 

  48. Dalby RN, Byron PR. Comparison of output particle size distributions from pressurized aerosols formulated as solutions or suspensions. Pharm Res. 1988;5(1):36–9.

    CAS  PubMed  Google Scholar 

  49. Noakes T. Medical aerosol propellants. J Fluor Chem. 2002;118(1):35–45.

    CAS  Google Scholar 

  50. U.S. Food and Drug Administration. Inactive Ingredient Search for Approved Drug Products. 2013; Available at: http://www.accessdata.fda.gov/scripts/cder/iig/. Accessed June 21, 2013.

  51. U.S. Food and Drug Administration. Drugs@FDA: FDA Approved Drug Products. Available at: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm. Accessed June 21, 2013.

  52. Grainger C, Saunders M, Buttini F, Telford R, Merolla L, Martin G, et al. Critical characteristics for corticosteroid solution metered dose inhaler bioequivalence. Mol Pharm. 2012;9(3):563–9.

    CAS  PubMed  Google Scholar 

  53. Riley T, Christopher D, Arp J, Casazza A, Colombani A, Cooper A, et al. Challenges with developing in vitro dissolution tests for orally inhaled products (OIPs). AAPS PharmSciTech. 2012;13(3):978–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Hoye JA, Myrdal PB. Measurement and correlation of solute solubility in HFA-134a/ethanol systems. Int J Pharm. 2008;362(1):184–8.

    CAS  PubMed  Google Scholar 

  55. Stein SW, Myrdal PB. The relative influence of atomization and evaporation on metered dose inhaler drug delivery efficiency. Aerosol Sci Tech. 2006;40(5):335–47.

    CAS  Google Scholar 

  56. Gupta A, Stein SW, Myrdal PB. Balancing ethanol cosolvent concentration with product performance in 134a-based pressurized metered dose inhalers. J Aerosol Med. 2003;16(2):167–74.

    CAS  PubMed  Google Scholar 

  57. Myrdal PB, Karlage KL, Stein SW, Brown BA, Haynes A. Optimized dose delivery of the peptide cyclosporine using hydrofluoroalkane-based metered dose inhalers. J Pharm Sci. 2004;93(4):1054–61.

    CAS  PubMed  Google Scholar 

  58. Mogalian E, Myrdal PB. Application of USP inlet extensions to the TSI impactor system 3306/3320 using HFA 227 based solution metered dose inhalers. Drug Dev Ind Pharm. 2005;31(10):977–85.

    CAS  PubMed  Google Scholar 

  59. Saleem IY, Smyth HD. Tuning aerosol particle size distribution of metered dose inhalers using cosolvents and surfactants. BioMed Res Int. 2013. doi:10.1155/2013/574310.

    Google Scholar 

  60. Stein SW, Gabrio BJ. Understanding throat deposition during cascade impactor testing. Respir Drug Deliv. 2000;2:287–90.

    Google Scholar 

  61. Stein SW, Myrdal PB. A theoretical and experimental analysis of formulation and device parameters affecting solution MDI size distributions. J Pharm Sci. 2004;93(8):2158–75.

    CAS  PubMed  Google Scholar 

  62. Sheth P, Stein SW, Myrdal PB. The influence of initial atomized droplet size on residual particle size from pressurized metered dose inhalers. Int J Pharm. 2013;455(1–2):57–65.

    CAS  PubMed  Google Scholar 

  63. Warren SJ, Farr SJ. Formulation of solution metered dose inhalers and comparison with aerosols emitted from conventional suspension systems. Int J Pharm. 1995;124(2):195–203.

    CAS  Google Scholar 

  64. Stein SW, Forsyth BR, Stefely JS, Christensen JD, Alband TD, Jinks PA. Expanding the dosing range of metered dose inhalers through formulation and hardware optimization. Respir Drug Deliv. 2004;1:125–34.

    Google Scholar 

  65. Scherrer RA, Stefely JS, Stein SW, inventors; 3M Innovative Properties Company, assignee. Medicinal aerosol formulations comprising ion pair complexes. World Intellectual Property Organization patent WO 2003/059316. 24 Jul 2003.

  66. Stefely JS, Duan DC, Myrdal PB, Ross DL, Schultz DW, Leach CL. Design and utility of a novel class of biocompatible excipients for HFA based MDIs. Respir Drug Deliv. 2000;1:83–90.

    Google Scholar 

  67. Stefely JS, Brown BA, Hammerbeck DM, Stein SW. Equipping the MDI for the 21st century by expanding its formulation options. Respir Drug Deliv. 2002;1:207–14.

    Google Scholar 

  68. Stefely JS, Duan DC, inventors; 3M Innovative Properties Company, assignee. Medicinal aerosol compositions with a functionalized polyethyleneglycol excipient. US patent US 7,718,162. 18 May 2010.

  69. Rogueda P, inventor; AstraZeneca, assignee. Pharmaceutical spray formulation comprising a hypro fluor alkane amd an acylated cyclodextrin. World Intellectual Property Organization patent WO 2005/053637. 16 Jun 2005.

  70. Tashkin DP. Extra-fine corticosteroid aerosols from hydrofluoroalkane-134a metered-dose inhalers: potential advantages and disadvantages. Chest. 1999;115(2):316–8.

    CAS  PubMed  Google Scholar 

  71. Magnussen H. Budesonide Modulite®: improving the changeover to CFC-free treatments. Respir Med. 2003;97(Suppl D):S1–3.

    PubMed  Google Scholar 

  72. Lewis D, Ganderton D, Meakin B, Brambilla G. Modulite®: a simple solution to a difficult problem. Respiration. 2005;72 Suppl 1:3–5.

    PubMed  Google Scholar 

  73. Ganderton D, Lewis D, Davies R, Meakin B, Church T. The formulation and evaluation of a CFC-free budesonide pressurised metered dose inhaler. Respir Med. 2003;97:S4–9.

    PubMed  Google Scholar 

  74. Majury C, Tran CH, Taylor G. Assessing the influence of ethanol on the aerosol properties of beclomethasone pMDIs using the next generation impactor. Respir Drug Deliv. 2012;2:433–6.

    Google Scholar 

  75. Chaplin S, Head S. Clenil Modulite, a CFC-free MDI with no adjustment on switching. Prescriber. 2007;18(13):43–6.

    Google Scholar 

  76. Busse WW, Brazinsky S, Jacobson K, Stricker W, Schmitt K, Vanden Burgt J, et al. Efficacy response of inhaled beclomethasone dipropionate in asthma is proportional to dose and is improved by formulation with a new propellant. J Allergy Clin Immunol. 1999;104(6):1215–22.

    CAS  PubMed  Google Scholar 

  77. Lipworth B. Targeting the small airways asthma phenotype: If we can reach it, should we treat it? Ann Allergy Asthma Immonol. 2013;110(4):233–9.

    CAS  Google Scholar 

  78. Leach C, Davidson P, Boudreau R. Improved airway targeting with the CFC-free HFA-beclomethasone metered-dose inhaler compared with CFC-beclomethasone. Eur Respir J. 1998;12(6):1346–53.

    CAS  PubMed  Google Scholar 

  79. Price D, Thomas M, Haughney J, Lewis RA, Burden A, von Ziegenweidt J, et al. Real-life comparison of beclometasone dipropionate as an extrafine-or larger-particle formulation for asthma. Respir Med. 2013. doi:10.1016/j.rmed.2013.03.009.

    Google Scholar 

  80. Robinson CA, Tsourounis C. Inhaled corticosteroid metered-dose inhalers: how do variations in technique for solutions versus suspensions affect drug distribution? Ann Pharmacother. 2013;47(3):416–20.

    PubMed  Google Scholar 

  81. Barnes N, Price D, Colice G, Chisholm A, Dorinsky P, Hillyer E, et al. Asthma control with extrafine-particle hydrofluoroalkane–beclometasone vs. large-particle chlorofluorocarbon–beclometasone: a real-world observational study. Clin Exp Allergy. 2011;41(11):1521–32.

    CAS  PubMed  Google Scholar 

  82. Church TK, Lewis DA, Ganderton D, Meakin BJ, Brambilla G, inventors; Chiesi Farmaceutici S.p.A, assignee. Salmeterol superfine formulation. US patent US 8,088,362. 3 Jan 2012.

  83. Lewis D, Ganderton D, Meakin B, Brambilla G, Ferraris A, inventors; Cheiesi Farmaceutici S.p.A., assignee. Stable pharmaceutical solution formulations for pressurized metered dose inhalers. US patent US 7,018,618. 28 Mar 2006.

  84. Tzou T, Pachuta RR, Coy RB, Schultz RK. Drug form selection in albuterol-containing metered-dose inhaler formulations and its impact on chemical and physical stability. J Pharm Sci. 1997;86(12):1352–7.

    CAS  PubMed  Google Scholar 

  85. Stank K, Steckel H. Physico-chemical characterisation of surface modified particles for inhalation. Int J Pharm. 2013;114:9–18.

    Google Scholar 

  86. Shoyele SA, Cawthorne S. Particle engineering techniques for inhaled biopharmaceuticals. Adv Drug Deliv Rev. 2006;58(9):1009–29.

    CAS  PubMed  Google Scholar 

  87. Chow AH, Tong HH, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res. 2007;24(3):411–37.

    CAS  PubMed  Google Scholar 

  88. Murnane D, Martin GP, Marriott C. Investigations into the formulation of metered dose inhalers of salmeterol xinafoate and fluticasone propionate microcrystals. Pharm Res. 2008;25(10):2283–91.

    CAS  PubMed  Google Scholar 

  89. Jones SA, Martin GP, Brown MB. Manipulation of beclomethasone–hydrofluoroalkane interactions using biocompatible macromolecules. J Pharm Sci. 2006;95(5):1060–74.

    CAS  PubMed  Google Scholar 

  90. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1):1–19.

    CAS  PubMed  Google Scholar 

  91. Telko MJ, Hickey AJ. Dry powder inhaler formulation. Respir Care. 2005;50(9):1209–27.

    PubMed  Google Scholar 

  92. Malcolmson RJ, Embleton JK. Dry powder formulations for pulmonary delivery. Pharm Sci Technol Today. 1998;1(9):394–8.

    CAS  Google Scholar 

  93. Li H, Seville PC. Novel pMDI formulations for pulmonary delivery of proteins. Int J Pharm. 2010;385(1):73–8.

    CAS  PubMed  Google Scholar 

  94. Li H, Song X, Seville PC. The use of sodium carboxymethylcellulose in the preparation of spray-dried proteins for pulmonary drug delivery. Eur J Pharm Sci. 2010;40(1):56–61.

    CAS  PubMed  Google Scholar 

  95. Liao Y, Brown MB, Jones SA, Nazir T, Martin GP. The effects of polyvinyl alcohol on the in vitro stability and delivery of spray-dried protein particles from surfactant-free HFA 134a-based pressurised metered dose inhalers. Int J Pharm. 2005;304(1):29–39.

    CAS  PubMed  Google Scholar 

  96. Jones SA, Martin GP, Brown MB. Stabilisation of deoxyribonuclease in hydrofluoroalkanes using miscible vinyl polymers. J Control Release. 2006;115(1):1–8.

    CAS  PubMed  Google Scholar 

  97. Tam JM, Engstrom JD, Williams III RO, Johnston KP. Suspensions of protein and poorly water soluble drug particles for high dosages with pressurized metered dose inhalers. Respir Drug Deliv. 2008;3:931–6.

    Google Scholar 

  98. Tan Y, Yang Z, Peng X, Xin F, Xu Y, Feng M, et al. A novel bottom-up process to produce nanoparticles containing protein and peptide for suspension in hydrofluoroalkane propellants. Int J Pharm. 2011;413(1):167–73.

    CAS  PubMed  Google Scholar 

  99. Selvam P, El-Sherbiny IM, Smyth HD. Swellable hydrogel particles for controlled release pulmonary administration using propellant-driven metered dose inhalers. J Aerosol Med. 2011;24(1):25–34.

    CAS  Google Scholar 

  100. Longest PW, Hindle M. Numerical model to characterize the size increase of combination drug and hygroscopic excipient nanoparticle aerosols. Aerosol Sci Tech. 2011;45(7):884–99.

    Google Scholar 

  101. Williams III RO, Barron MK, Alonso MJ, Remuñán-López C. Investigation of a pMDI system containing chitosan microspheres and P134a. Int J Pharm. 1998;174(1):209–22.

    CAS  Google Scholar 

  102. Haghi M, Bebawy M, Colombo P, Forbes B, Lewis D, Salama R, et al. Towards the bioequivalence of pressurised metered dose inhalers 2. Aerodynamically equivalent particles (with and without glycerol) exhibit different biopharmaceutical profiles in vitro. Eur J Pharm Biopharm. 2013. doi:10.1016/j.ejpb.2013.02.020.

    Google Scholar 

  103. O'Donnell KP, Williams III RO. Pulmonary dispersion formulations: The impact of dispersed powder properties on pressurized metered dose inhaler stability. Drug Dev Ind Pharm. 2013;39(3):413–24.

    PubMed  Google Scholar 

  104. Rogueda PG, Buckin V, Kudryashov E. Size and concentration monitoring of HFA suspensions. Respir Drug Deliv. 2006;2:453–6.

    Google Scholar 

  105. Lechuga-Ballesteros D, Noga B, Vehring R, Cummings RH, Dwivedi SK. Novel cosuspension metered-dose inhalers for the combination therapy of chronic obstructive pulmonary disease and asthma. Futur Med Chem. 2011;3(13):1703–18.

    CAS  Google Scholar 

  106. Sukasamea N, Boonmea P, Srichanaa T. Development of budesonide suspensions for use in an HFA pressurized metered dose inhaler. ScienceAsia. 2011;37(1):31–7.

    Google Scholar 

  107. Rogueda P. Novel hydrofluoroalkane suspension formulations for respiratory drug delivery. Expert Opin Drug Deliv. 2005;2(4):625–38.

    CAS  PubMed  Google Scholar 

  108. Stein SW, Sheth P, Karayiannis C, Chiou H, Myrdal PB. Modeling MDI delivery: A priori predictions, empirical models and experiments. Respir Drug Deliv. 2010;1:353–64.

    Google Scholar 

  109. Stein SW, Sheth P, Myrdal PB. A model for predicting size distributions delivered from pMDIs with suspended drug. Int J Pharm. 2012;422(1):101–15.

    CAS  PubMed  Google Scholar 

  110. Berry J, Kline LC, Sherwood JK, Chaudhry S, Obenauer-Kutner L, Hart JL, et al. Influence of the size of micronized active pharmaceutical ingredient on the aerodynamic particle size and stability of a metered dose inhaler. Drug Dev Ind Pharm. 2004;30(7):705–14.

    CAS  PubMed  Google Scholar 

  111. Sharpe SA, Sequeira JA, inventors; Schering Corporation, assignee. Metered dose inhaler containing an aerosol suspension formulation. European patent EP 1,785,156. 2012 Jun 27.

  112. Sherwood JK, Alex S, Salama G, Obenauer-Kutner L, Huyck S, Berry J, et al. Particle size coarsening induced by valve silicone in a metered dose inhaler. Drug Dev Ind Pharm. 2007;33(2):155–62.

    CAS  PubMed  Google Scholar 

  113. Berry J, Kline L, Naini V, Chaudhry S, Hart J, Sequeira J. Influence of the valve lubricant on the aerodynamic particle size of a metered dose inhaler. Drug Dev Ind Pharm. 2004;30(3):267–75.

    CAS  PubMed  Google Scholar 

  114. James J, Davies M, Toon R, Jinks P, Roberts CJ. Particulate drug interactions with polymeric and elastomeric valve components in suspension formulations for metered dose inhalers. Int J Pharm. 2009;366(1):124–32.

    CAS  PubMed  Google Scholar 

  115. Ridder KB, Davies-Cutting CJ, Kellaway IW. Surfactant solubility and aggregate orientation in hydrofluoroalkanes. Int J Pharm. 2005;295(1):57–65.

    CAS  PubMed  Google Scholar 

  116. da Rocha SR, Bharatwaj B, Saiprasad S. Science and technology of pressurized metered-dose inhalers. In: Smyth HDC, Hickey AJ, editors. Controlled pulmonary drug delivery. New York: Springer; 2011. p. 165–201.

    Google Scholar 

  117. BASF: The Chemical Company. Pluronic®: product Information. Available at: http://worldaccount.basf.com/wa/NAFTA~en_US/Catalog/ChemicalsNAFTA/pi/BASF/Brand/pluronic. Accessed July 7, 2013.

  118. Alexandridis P, Alan HT. Poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A Physicochem Eng Asp. 1995;96(1):1–46.

    CAS  Google Scholar 

  119. Griffin WC. Calculation of HLB values of non-ionic surfactants. Am Perfumer Essent Oil Rev. 1955;65:26–9.

    CAS  Google Scholar 

  120. Sommerville ML, Cain JB, Johnson Jr CS, Hickey AJ. Lecithin inverse microemulsions for the pulmonary delivery of polar compounds utilizing dimethylether and propane as propellants. Pharm Dev Technol. 2000;5(2):219–30.

    CAS  PubMed  Google Scholar 

  121. Sheth P, Myrdal PB. Polymers for pulmonary drug delivery. In: Smyth HDC, Hickey AJ, editors. Controlled pulmonary drug delivery. New York: Springer; 2011. p. 265–82.

    Google Scholar 

  122. Leach CL, Hameister WM, Tomaie MA, Hammerbeck DM, Stefely JS. Oligolactic acid (OLA) biomatrices for sustained release of asthma therapeutics. Respir Drug Deliv. 2000;1:75–82.

    Google Scholar 

  123. Traini D, Young P, Rogueda P, Price R. Investigation into the influence of polymeric stabilizing excipients on inter-particulate forces in pressurised metered dose inhalers. Int J Pharm. 2006;320(1):58–63.

    CAS  PubMed  Google Scholar 

  124. Wu L, da Rocha SR. Biocompatible and biodegradable copolymer stabilizers for hydrofluoroalkane dispersions: a colloidal probe microscopy investigation. Langmuir. 2007;23(24):12104–10.

    CAS  PubMed  Google Scholar 

  125. Rogueda PG. Pushing the boundaries: searching for novel HFA suspension formulations. Respir Drug Deliv. 2004;1:117–24.

    Google Scholar 

  126. Looker BE, Lunniss CJ, Redgrave AJ, inventors; Glaxo Group Limited, assignee. Compounds for use as surfactants. World Intellectual Property Organization patent WO 2003/035237. 1 May 2003.

  127. Looker BE, Lunniss CJ, Redgrave A, inventors; Glaxo Group Limited, assignee. Carboxylic acid compounds for use as surfactants. World Intellectual Property Organization patent WO 2003/068722. 21 Aug 2003.

  128. Berry J, Chaudry IA, Sequeira JA, Kopcha M, inventors; Schering Corporation, assignee. Non-chlorofluorocarbon aerosol formulations. European patent EP 0656206. 4 June 1995.

  129. Tan Y, Yang Z, Pan X, Chen M, Feng M, Wang L, et al. Stability and aerosolization of pressurized metered dose inhalers containing thymopentin nanoparticles produced using a bottom-up process. Int J Pharm. 2012;427(2):385–92.

    CAS  PubMed  Google Scholar 

  130. Kellaway IW, Taylor K, Nyambura BK, inventors; School of Pharmacy, University of London, assignee. Formulations for delivery via pressurised metered dose inhalers comprising an essential oil as suspension stabiliser. European patent EP 2,089,008. 20 Jul 2011.

  131. Byron PR, Blondino FE. Metered dose inhaler fomulations which include the ozone-friendly propellant HFC 134a and a pharmaceutically acceptable suspending, solubilizing, wetting, emulsifying or lubricating agent 1996.

  132. Byron P, Blondino F inventors; The Center for Innovative Technology, Virginia Commonwealth University, assignees. Pharmaceutically acceptable agents for solubilizing, wetting, emulsifying, or lubricating in metered dose inhaler formulations which use HFC-227 propellant. US patent US 5,492,688. 20 Feb 1996.

  133. Cantor AS, Stefely JS, Jinks PA, Baran JR, Ganser JM, Mueting MW, et al. Modifying interparticulate interactions using surface-modified excipient nanoparticles. Respir Drug Deliv. 2008;1:309–18.

    Google Scholar 

  134. Sharma K, Somavarapu S, Colombani A, Govind N, Taylor KM. Crosslinked chitosan nanoparticle formulations for delivery from pressurized metered dose inhalers. Eur J Pharm Biopharm. 2012;81(1):74–81.

    CAS  PubMed  Google Scholar 

  135. Steckel H, Wehle S. A novel formulation technique for metered dose inhaler (MDI) suspensions. Int J Pharm. 2004;284(1):75–82.

    CAS  PubMed  Google Scholar 

  136. Sawatdee S, Phetmung H, Srichana T. Sildenafil citrate monohydrate–cyclodextrin nanosuspension complexes for use in metered-dose inhalers. Int J Pharm. 2013. doi:10.1016/j.ijpharm.2013.07.023.

    PubMed  Google Scholar 

  137. Wu L, Al-Haydari M, da Rocha SR. Novel propellant-driven inhalation formulations: engineering polar drug particles with surface-trapped hydrofluoroalkane-philes. Eur J Pharm Sci. 2008;33(2):146–58.

    CAS  PubMed  Google Scholar 

  138. Wu L, Bharatwaj B, Panyam J, da Rocha SR. Core–shell particles for the dispersion of small polar drugs and biomolecules in hydrofluoroalkane propellants. Pharm Res. 2008;25(2):289–301.

    CAS  PubMed  Google Scholar 

  139. Chokshi U, Selvam P, Porcar L, da Rocha SR. Reverse aqueous emulsions and microemulsions in HFA227 propellant stabilized by non-ionic ethoxylated amphiphiles. Int J Pharm. 2009;369(1):176–84.

    CAS  PubMed  Google Scholar 

  140. Selvam P, Bharatwaj B, Porcar L, da Rocha SR. Reverse aqueous microemulsions in hydrofluoroalkane propellants and their aerosol characteristics. Int J Pharm. 2012;422(1):428–35.

    CAS  PubMed  Google Scholar 

  141. Butz N, Porte C, Courrier H, Krafft M, Vandamme TF. Reverse water-in-fluorocarbon emulsions for use in pressurized metered-dose inhalers containing hydrofluoroalkane propellants. Int J Pharm. 2002;238(1):257–69.

    CAS  PubMed  Google Scholar 

  142. Patel N, Marlow M, Lawrence MJ. Formation of fluorinated nonionic surfactant microemulsions in hydrofluorocarbon 134a (HFC 134a). J Colloid Interface Sci. 2003;258(2):345–53.

    CAS  PubMed  Google Scholar 

  143. Murata S, Ito H, Izumi T, Chikushi A. Effect of the moisture content in aerosol on the spray performance of Stmerin® D HFA preparations. Chem Pharm Bull. 2006;54(9):1276–80.

    CAS  PubMed  Google Scholar 

  144. Murata S, Izumi T, Ito H. Effect of the moisture content in aerosol on the spray performance of Stmerin® D hydrofluoroalkane preparations (2). Chem Pharm Bull. 2012;60(5):593–7.

    CAS  PubMed  Google Scholar 

  145. Adjei A, Cutie AJ, inventors. Medicinal aerosol formulation. US patent US 6,261,539. 17 Jul 2001.

  146. DeStefano G, Kelash-Cannova LJ, inventors; Boehringer Ingelheim Pharmaceutics, Inc., assignee. Formulation for metered dose inhaler using hydro-fluoro-alkanes as propellants. US patent US 7,914,770. 29 Mar 2011.

  147. Neale PJ, Taylor AJ, inventors; Glaxo Group Limited, assignee. Medicaments for treating respiratory disorders. United States patent US 5,688,782. 1997 Nov 18.

  148. Dellamary LA, Tarara TE, Smith DJ, Woelk CH, Adractas A, Costello ML, et al. Hollow porous particles in metered dose inhalers. Pharm Res. 2000;17(2):168–74.

    CAS  PubMed  Google Scholar 

  149. Weers JG, Tarara TE, Malcolmson RJ, Leung D. Embedded crystals in low density particles: formulation, manufacture, and properties. Respir Drug Deliv. 2006;1:297–306.

    Google Scholar 

  150. Tarara TE, Hartman MS, Gill H, Kennedy AA, Weers JG. Characterization of suspension-based metered dose inhaler formulations composed of spray-dried budesonide microcrystals dispersed in HFA-134a. Pharm Res. 2004;21(9):1607–14.

    CAS  PubMed  Google Scholar 

  151. Geller DE, Weers J, Heuerding S. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphere™ technology. J Aerosol Med. 2011;24(4):175–82.

    CAS  Google Scholar 

  152. Jinks PA. Preparation and utility of sub-micron lactose, a novel excipient for HFA MDI suspension formulations [abstract]. Drug Del to the Lungs, 14. 2003.

  153. James J, Crean B, Davies M, Toon R, Jinks P, Roberts CJ. The surface characterisation and comparison of two potential sub-micron, sugar bulking excipients for use in low-dose, suspension formulations in metered dose inhalers. Int J Pharm. 2008;361(1):209–21.

    CAS  PubMed  Google Scholar 

  154. Adjei A, Cutie AJ, inventors; Aeropharm Technology Incorporated, assignee. Medicinal aerosol formulation. European patent EP 1,731,140. 13 Apr 2011.

  155. Toneguzzo F, Vega JC, inventors; Laboratorio Pablo Cassara S.R.L., assignee. Stabilized metered dose inhaler. US patent US 104,488. 2 My 2013.

  156. Jones R, Evans RM, Warren SJ, Taylor G. Development of a fluticasone propionate suspension pMDI formulation using a second particulate system. Respir Drug Deliv. 2004;2:401–4.

    Google Scholar 

  157. Jones R, Evans RM, Warren SJ, Taylor G. Development of a novel suspension MDI formulation using a low energy dispersion system. Respir Drug Deliv. 2002;2:799–802.

    Google Scholar 

  158. Young PM, Adi H, Patel T, Law K, Rogueda P, Traini D. The influence of micronised particulates on the aerosolisation properties of pressurised metered dose inhalers. J Aerosol Sci. 2009;40(4):324–37.

    CAS  Google Scholar 

  159. Johnson M. Inhaled corticosteroid—long-acting ß2-agonist synergism: therapeutic implications in human lung disease. Respir Drug Deliv. 2004;1:99–108.

    Google Scholar 

  160. Kaerger JS, Price R. Processing of spherical crystalline particles via a novel solution atomization and crystallization by sonication (SAXS) technique. Pharm Res. 2004;21(2):372–81.

    CAS  PubMed  Google Scholar 

  161. Adi H, Young PM, Traini D. Co-deposition of a triple therapy drug formulation for the treatment of chronic obstructive pulmonary disease using solution-based pressurised metered dose inhalers. J Pharm Pharmacol. 2012;64(9):1245–53.

    CAS  PubMed  Google Scholar 

  162. Rogueda PG, Price R, Smith T, Young PM, Traini D. Particle synergy and aerosol performance in non-aqueous liquid of two combinations metered dose inhalation formulations: an AFM and Raman investigation. J Colloid Interface Sci. 2011;361(2):649–55.

    CAS  PubMed  Google Scholar 

  163. Vehring R, Lechuga-Ballesteros D, Joshi V, Noga B, Dwivedi SK. Cosuspensions of microcrystals and engineered microparticles for uniform and efficient delivery of respiratory therapeutics from pressurized metered dose inhalers. Langmuir. 2012;28(42):15015–23.

    CAS  PubMed  Google Scholar 

  164. Noga B, Cummings H, Joshi V, Lechuga-Ballesteros D, Schultz RD, Speck JH, et al. Product performance, stability and dose proportionality of glycopyrrolate metered dose inhaler with sub-microgram doses using Pearl cosuspension technology. Respir Drug Deliv. 2012;2:645–8.

    Google Scholar 

Download references

Conflict of Interest

Stephen W. Stein is currently employed by 3M Drug Delivery Systems. Poonam Sheth and Paul B. Myrdal declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Sheth.

Additional information

Guest Editors: Paul B. Myrdal and Steve W. Stein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myrdal, P.B., Sheth, P. & Stein, S.W. Advances in Metered Dose Inhaler Technology: Formulation Development. AAPS PharmSciTech 15, 434–455 (2014). https://doi.org/10.1208/s12249-013-0063-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-0063-x

KEY WORDS

Navigation