Skip to main content

Advertisement

Log in

Design, Characterization, and In Vitro Evaluation of Antifungal Polymeric Films

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of the present paper was the development and the full characterization of antifungal films. Econazole nitrate (ECN) was loaded in a polymeric matrix formed by chitosan (CH) and carbopol 971NF (CB). Polyethylene glycol 400 and sorbitol were used as plasticizing agents. The mechanical properties of films were poorer when the drug was loaded, probably because crystals of ENC produces network outages and therefore reduces the polymeric interactions between the polymers. Polymers–ECN and CH–CB interactions were analyzed by Fourier-transform infrared spectroscopy (FTIR), thermal gravimetry analysis, and differential thermal analysis (DTA-TGA). ECN did not show structure alterations when loaded into the films. In scanning electron microphotographs and atomic force microscopy analysis, films prepared with CB showed an evident wrinkle pattern probably due to the strong interactions between the polymers, which were observed by FTIR and DTA-TGA. The in vitro activity of the formulations against Candida krusei and Candida parapsilosis was twice as greater as the commercial cream, probably as a result of the antifungal combination of the drug with the CH activity. All these results suggest that these polymeric films containing ECN are potential candidates in view of alternatives dosages forms for the treatment of the yeast assayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34:641–78.

    Article  CAS  Google Scholar 

  2. Ziani K, Ursúa B, Maté JI. Application of bioactive coatings based on chitosan for artichoke seed protection. Crop Prot. 2010;29:853–9.

    Article  CAS  Google Scholar 

  3. Smitha B, Sridhar S, Khan A. Chitosan-sodium alginate polyion complexes as fuel cell membranes. Eur Polym J. 2005;41:1859–66.

    Article  CAS  Google Scholar 

  4. Yan X, Khor E, Lim LY. PEC films prepared from chitosan-alginate coacervates. Chem Pharm Bull. 2000;48:941–6.

    Article  PubMed  CAS  Google Scholar 

  5. Ma L, Gaoa C, Mao Z, Zhou J, Shen J, Hu X, Han C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003;24:4833–41.

    Article  PubMed  CAS  Google Scholar 

  6. Majeti NV, Ravi K. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27.

    Article  Google Scholar 

  7. Shi CH, Shieh YT, Twu YK. Preparation and characterization of cellulose/chitosan films. Carbohydr Polym. 2009;78:169–74.

    Article  Google Scholar 

  8. Vargas M, Albors A, Chiralt A, Gonzalez-Martinez C. Characterization of chitosan-oleic acid composite films. Food Hydrocoll. 2009;23:536–47.

    Article  CAS  Google Scholar 

  9. Portes E, Gardrat C, Castellan A, Coma V. Environmentally friendly films based on chitosan and tetrahydrocurcuminoid derivatives exhibiting antibacterial and antioxidative properties. Carbohydr Polym. 2009;76:578–84.

    Article  CAS  Google Scholar 

  10. Mura P, Corti G, Cirri M, Maestrelli F, Mennini N, Bragagni M. Development of mucoadhesive films for buccal administration of flufenamic acid: effect of cyclodextrin complexation. J Pharm Sci. 2010;99:3019–29.

    PubMed  CAS  Google Scholar 

  11. de la Torre PM, Enobakhare Y, Torrado G, Torrado S. Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid). Study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials. 2003;24:1499–506.

    Article  PubMed  Google Scholar 

  12. Perioli L, Ambrogi V, Pagano C, Scuota S, Rossi C. FG90 chitosan as a new polymer for metronidazole mucoadhesive tablets for vaginal administration. Int J Pharm. 2009;377:120–7.

    Article  PubMed  CAS  Google Scholar 

  13. Silva CL, Pereira JC, Ramalho A, Pais AACC, Sousa JJS. Films based on chitosan polyelectrolyte complexes for skin drug delivery: development and characterization. J Membr Sci. 2008;320:268–79.

    Article  CAS  Google Scholar 

  14. Nitayaphat W, Jiratumnukul N, Charuchinda S, Kittinaovarat S. Mechanical properties of chitosan/bamboo charcoal composite films made with normal and surface oxidized charcoal. Carbohydr Polym. 2009;78:444–8.

    Article  CAS  Google Scholar 

  15. Dobrynin AV, Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci. 2005;30:1049–118.

    Article  CAS  Google Scholar 

  16. Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A. Incorporation of small quantities of surfactants as a way to improve the rheological and diffusional behavior of carbopol gels. J Control Release. 2001;77:59–75.

    Article  PubMed  CAS  Google Scholar 

  17. Zipfel PF, Skerkaa C, Kupkaa D, Luoa S. Immune escape of the human facultative pathogenic yeast Candida albicans: the many faces of the Candida Pra1 protein. Int J Med Microbiol. 2011;301:423–30.

    Article  PubMed  CAS  Google Scholar 

  18. Monk B, Goffeau A. Outwitting multidrug resistance to antifungals. Science. 2008;321:367–9.

    Article  PubMed  CAS  Google Scholar 

  19. Hof H. Mykologie fur mediziner. Stuttgart: Thieme-Verlag; 2003.

    Google Scholar 

  20. Weitzman I, Summerbell R. The dermatophytes. Clin Microbiol Rev. 1995;8:240–59.

    PubMed  CAS  Google Scholar 

  21. Seyfarth F, Schliemann S, Elsner P, Hipler UC. Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-d-glucosamine against Candida albicans, Candida krusei and Candida glabrata. Int J Pharm. 2008;353:139–48.

    PubMed  CAS  Google Scholar 

  22. Albertini B, Passerini N, Di Sabatino M, Vitali B, Brigidi P, Rodriguez L. Polymer–lipid based mucoadhesive microspheres prepared by spray-congealing for the vaginal delivery of econazole nitrate. Eur J Pharm Sci. 2009;36:591–601.

    Article  PubMed  CAS  Google Scholar 

  23. Dyas AM, Delargy H. Econazole nitrate. In: Florey K, editor. Analytical profiles of drug substances, 23. New York: Academic Press; 1994. p. 125–51.

    Google Scholar 

  24. Acartürk F. Mucoadhesive vaginal drug delivery systems. Recent Pat Drug Deliv Formul. 2009;3:193–205.

    Article  PubMed  Google Scholar 

  25. Gavini E, Sanna V, Julianno C, Bonferoni MC, Giunchedi P. Mucoadhesive vaginal tablets as veterinary delivery system for the controlled release of an antimicrobial drug, acriflavine. AAPS PharmSciTech. 2002;3(3):article 20.

    Article  Google Scholar 

  26. Valenta C. The use of mucoadhesive polymers in vaginal delivery. Adv Drug Deliv Rev. 2005;57(11):1692–712.

    Article  PubMed  CAS  Google Scholar 

  27. Lehr CM, Bouwstra JA, Schacht EH, Junginger HE. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm. 1992;78:43–8.

    Article  CAS  Google Scholar 

  28. Khan TA, Peh KK, Chang HS. Mechanical, bioadhesive strength and biological evaluation of chitosan films for wound dressing. J Pharm Pharm Sci. 2000;3:303–11.

    PubMed  CAS  Google Scholar 

  29. Berger J, Reist M, Mayer JM, Felt O, Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):35–52.

    Article  PubMed  CAS  Google Scholar 

  30. Cardenas G, Miranda P. FTIR and TGA studies of chitosan composite films. J Chil Chem Soc. 2004;49(4):291–5.

    Article  CAS  Google Scholar 

  31. de Oliveira HC, Fonseca JL, Pereira MR. Chitosan-poly(acrylic acid) polyelectrolyte complex membranes: preparation, characterization and permeability studies. J Biomater Sci Polym. 2008;19(2):143–60.

    Article  Google Scholar 

  32. Chen CH, Lai LS. Mechanical and water vapor barrier properties of tapioca starch decolorized hsian-tsao leaf gum films in the presence of plasticizer. Food Hydrocoll. 2008;22:1584–95.

    Article  CAS  Google Scholar 

  33. Shellhammer TH, Krochta JM. Whey protein emulsion film performance as affected by lipid type and amount. J Food Sci. 1997;62:390–4.

    Article  CAS  Google Scholar 

  34. Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum. 2007;78:013705. doi:10.1063/1.2432410.

    Article  PubMed  CAS  Google Scholar 

  35. Lee TW, Kim JC, Hwang SJ. Hydrogel patches containing triclosan for acne treatment. Eur J Pharm Biopharm. 2003;56(3):407–12.

    Article  PubMed  CAS  Google Scholar 

  36. Leonardi D, Barrera MG, Lamas MC, Salomon CJ. Development of prednisone:polyethylene glycol 6000 fast-release tablets from solid dispersions: solid-state characterization, dissolution behavior, and formulation parameters. AAPS PharmSciTech. 2007;8(4):221–8.

    Article  Google Scholar 

  37. Domjan A, Bajdik J, Pintye-Hodi K. Understanding of the plasticizing effects of glycerol and PEG 400 on chitosan films using solid-state NMR spectroscopy. Macromolecules. 2009;42:4667–73.

    Article  CAS  Google Scholar 

  38. Al-Marzouqi AH, Elwy HM, Shehadi I, Adem A. Physicochemical properties of antifungal drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J Pharm Biomed Anal. 2009;49:227–33.

    Article  PubMed  CAS  Google Scholar 

  39. Vasconcellos FC, Goulart GAS, Beppu MM. Production and characterization of chitosan microparticles containing papain for controlled release applications. Powder Technol. 2011;205:65–70.

    Article  CAS  Google Scholar 

  40. de la Torre PM, Torrado S, Torrado S. Interpolymer complexes of poly(acrylic acid) and chitosan: influence of the ionic hydrogel-forming medium. Biomaterials. 2003;24:1459–68.

    Article  PubMed  Google Scholar 

  41. Nunthanid J, Laungtna-anan M, Sriamornsak P, Limmatvaprirat S, Puttipipatkhachorn S, Lim LY, Khor E. Characterization of chitosan acetate as a binder for sustained release tablet. J Control Release. 2004;99:15–26.

    Article  PubMed  CAS  Google Scholar 

  42. Park SH, Chun MK, Choi HK. Preparation of an extended-release matrix tablet using chitosan/carbopol interpolymer complex. Int J Pharm. 2008;347:39–44.

    Article  PubMed  CAS  Google Scholar 

  43. Stuart B. Infrarred spectroscopy: fundamentals and applications. West Sussex: Wiley; 2004.

    Book  Google Scholar 

  44. Oyler AR, Naldi RE, Facchine KL, Burinsky DJ, Cozine MH, Dunphy R, et al. Characterization of autoxidation products of the antifungal compounds econazole nitrate and miconazole nitrate. Tetrahedron. 1991;47(33):6549–60.

    Article  CAS  Google Scholar 

  45. Gomez-Carracedo A, Alvarez-Lorenzo C, Gomez-Amoza JL, Concheiro A. Glass transitions and viscoelastic properties of Carbopol® and Noveon® compacts. Int J Pharm. 2004;274:233–43.

    Article  PubMed  CAS  Google Scholar 

  46. Wang SF, Shen L, Tong YJ, Chen L, Phang LY, Lim PQ, et al. Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stab. 2005;90:123–31.

    Article  CAS  Google Scholar 

  47. Torres MA, Aimoli CG, Beppu MM, Frejlich J. Chitosan membrane with patterned surface obtained through solution drying. Colloids Surf A Physicochem Eng Asp. 2005;268:175–9.

    Article  CAS  Google Scholar 

  48. Pedersen M, Bjerregaard S, Jacobsen J, Rommelmayer Larsen A, Mehlsen Sorensen A. An econazole β-cyclodextrin inclusion complex: an unusual dissolution rate, supersaturation, and biological efficacy example. Int J Pharm. 1998;165(1):57–68.

    Article  CAS  Google Scholar 

  49. Nogami H, Nagai T, Fukuoka E, Sonobe T. Disintegration of the aspirin tablets containing potato starch and microcrystalline cellulose in various concentrations. Chem Pharm Bull. 1969;17:1450–5.

    Article  PubMed  CAS  Google Scholar 

  50. Miyazaki S, Yamaguchi H, Yokouchi C, Takada M, Hou WM. Sustained release of indomethacin from chitosan granules in beagle dogs. J Pharm Pharmacol. 1988;40:642–3.

    Article  PubMed  CAS  Google Scholar 

  51. Albertini B, Passerini N, Di Sabatino M, Vitali B, Brigidi P, Rodriguez L. Polymer–lipid based mucoadhesive microspheres prepared by spray-congealing for the vaginal delivery of econazole nitrate. Eur J Pharm Sci. 2009;36(4–5):591–601.

    Article  PubMed  CAS  Google Scholar 

  52. Palmeira de Oliveira A, Ribeiro MP, Palmeira de Oliveira R, Gaspar C, Costa de Oliveira S, Correia IC, et al. Anti-Candida activity of a chitosan hydrogel: mechanism of action and cytotoxicity profile. Gynecol Obstet Invest. 2010;70(4):322–7.

    Article  PubMed  CAS  Google Scholar 

  53. Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JC, et al. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin. 2004;25:932–6.

    PubMed  CAS  Google Scholar 

  54. Gil G, del Monaco S, Cerrutti P, Galvagno M. Selective antimicrobial activity of chitosan on beer spoilage bacteria and brewing yeasts. Biotechnol Lett. 2004;26:569–74.

    Article  PubMed  CAS  Google Scholar 

  55. Limam Z, Selmi S, Sadok S, El Abed A. Extraction and characterization of chitin and chitosan from crustacean by-products: biological and physicochemical properties. Afr J Biotechnol. 2011;10:640–7.

    CAS  Google Scholar 

  56. Tayel AA, Moussa S, El-Tras WF, Knittel D, Opwis K, Schollmeyer E. Anticandidal action of fungal chitosan against Candida albicans. Int J Biol Macromol. 2010;47:454–7.

    Article  PubMed  CAS  Google Scholar 

  57. Tikhonov VE, Stepnova EA, Babak VG, Yamskov IA, Palma-Guerrero J, Hans-Börje J, et al. Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl) succinoyl/-derivatives. Carbohydr Polym. 2006;64:66–72.

    Article  CAS  Google Scholar 

  58. Wang X, Du Y, Yang J, Wang X, Shi X, Hu Y. Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer. 2006;47:6738–44.

    Article  CAS  Google Scholar 

  59. Martínez-Camacho AP, Cortez-Rochaa MO, Ezquerra-Brauer JM, Graciano-Verdugo AZ, Rodriguez-Félix F, Castillo-Ortega MM, et al. Chitosan composite films: thermal, structural, mechanical and antifungal properties. Carbohydr Polym. 2010;82:305–15.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The National University of Rosario (UNR), the National Council Research (CONICET, Argentina), and ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica) are gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darío Leonardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Real, D.A., Martinez, M.V., Frattini, A. et al. Design, Characterization, and In Vitro Evaluation of Antifungal Polymeric Films. AAPS PharmSciTech 14, 64–73 (2013). https://doi.org/10.1208/s12249-012-9894-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9894-0

KEY WORDS

Navigation