Skip to main content

Advertisement

Log in

Nano-delivery of Gemcitabine Derivative as a Therapeutic Strategy in a Desmoplastic KRAS Mutant Pancreatic Cancer

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Pancreatic ductal adenocarcinoma remains one of the challenging malignancies to treat, and chemotherapy is the primary treatment strategy available to most patients. Gemcitabine, one of the oldest chemotherapeutic drugs approved for pancreatic cancer, has limited efficacy, due to low drug distribution to the tumor and chemoresistance following therapy. In this study, we delivered gemcitabine monophosphate using lipid calcium phosphate nanoparticles, to desmoplastic pancreatic tumors. Monophosphorylation is a critical, rate-limiting step following cellular uptake of gemcitabine and precursor of the pharmacologically active gemcitabine triphosphate. Our drug delivery strategy enabled us to achieve robust tumor regression with a low parenteral dose in a clinically relevant, KRAS mutant, syngeneic orthotopic allograft, lentivirus-transfected KPC cell line-derived model of pancreatic cancer. Treatment with gemcitabine monophosphate significantly increased apoptosis of cancer cells, enabled reduction in the proportion of immunosuppressive tumor-associated macrophages and myeloid-derived suppressor cells, and did not increase expression of cancer stem cell markers. Overall, we could trigger a strong antitumor response in a treatment refractory PDAC model, while bypassing critical hallmarks of gemcitabine chemoresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Howlader NNA, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, et al. (eds). SEER Cancer Statistics Review. National Cancer Institute Bethesda, MD, https://seer.cancer.gov/csr/1975_2016/, based on November 2018 SEER data submission 1975–2016.

  2. Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362(17):1605–17.

    CAS  PubMed  Google Scholar 

  3. Zhang H. Onivyde for the therapy of multiple solid tumors. Onco Targets Ther. 2016;9:3001–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Buscail L, Bournet B, Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2020;17:153–68.

    CAS  PubMed  Google Scholar 

  5. Jordheim LP, Durantel D, Zoulim F, Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov. 2013;12(6):447–64.

    CAS  PubMed  Google Scholar 

  6. de Sousa Cavalcante L, Monteiro G. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol. 2014;741:8–16.

    PubMed  Google Scholar 

  7. Senanayake TH, Warren G, Vinogradov SV. Novel anticancer polymeric conjugates of activated nucleoside analogues. Bioconjug Chem. 2011;22(10):1983–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Karasek P, Skacel T, Kocakova I, Bednarik O, Petruzelka L, Melichar B, et al. Gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer: a prospective observational study. Expert Opin Pharmacother. 2003;4(4):581–6.

    CAS  PubMed  Google Scholar 

  9. Oguri T, Achiwa H, Sato S, Bessho Y, Takano Y, Miyazaki M, et al. The determinants of sensitivity and acquired resistance to gemcitabine differ in non-small cell lung cancer: a role of ABCC5 in gemcitabine sensitivity. Mol Cancer Ther. 2006;5(7):1800–6.

    CAS  PubMed  Google Scholar 

  10. Benjamin RS. Rationale for the use of mitoxantrone in the older patient: cardiac toxicity. Semin Oncol. 1995;22(1 Suppl 1):11–3.

    CAS  PubMed  Google Scholar 

  11. Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W. Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res. 1991;51(22):6110–7.

    CAS  PubMed  Google Scholar 

  12. Heinemann V, Xu YZ, Chubb S, Sen A, Hertel LW, Grindey GB, et al. Cellular elimination of 2′,2′-difluorodeoxycytidine 5′-triphosphate: a mechanism of self-potentiation. Cancer Res. 1992;52(3):533–9.

    CAS  PubMed  Google Scholar 

  13. Allain V, Bourgaux C, Couvreur P. Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices. Nucleic Acids Res. 2012;40(5):1891–903.

    CAS  PubMed  Google Scholar 

  14. Rejiba S, Reddy LH, Bigand C, Parmentier C, Couvreur P, Hajri A. Squalenoyl gemcitabine nanomedicine overcomes the low efficacy of gemcitabine therapy in pancreatic cancer. Nanomedicine. 2011;7(6):841–9.

    CAS  PubMed  Google Scholar 

  15. Du C, Qi Y, Zhang Y, Wang Y, Zhao X, Min H, et al. Epidermal growth factor receptor-targeting peptide nanoparticles simultaneously deliver gemcitabine and olaparib to treat pancreatic cancer with breast cancer 2 ( BRCA2) mutation. ACS Nano. 2018;12(11):10785–96.

    CAS  PubMed  Google Scholar 

  16. Li F, Zhao X, Wang H, Zhao R, Ji T, Ren H, et al. Multiple layer-by-layer lipid-polymer hybrid nanoparticles for improved FOLFIRINOX chemotherapy in pancreatic tumor models. Adv Funct Mater. 2015;25(5):788–98.

    CAS  Google Scholar 

  17. Li J, Chen YC, Tseng YC, Mozumdar S, Huang L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release. 2010;142(3):416–21.

    CAS  PubMed  Google Scholar 

  18. Zhang Y, Schwerbrock NM, Rogers AB, Kim WY, Huang L. Codelivery of VEGF siRNA and gemcitabine monophosphate in a single nanoparticle formulation for effective treatment of NSCLC. Mol Ther. 2013;21(8):1559–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Kim WY, Huang L. Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy. Biomaterials. 2013;34(13):3447–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang J, Miao L, Guo S, Zhang Y, Zhang L, Satterlee A, et al. Synergistic anti-tumor effects of combined gemcitabine and cisplatin nanoparticles in a stroma-rich bladder carcinoma model. J Control Release. 2014;182:90–6.

    CAS  PubMed  Google Scholar 

  21. Zhang Y, Peng L, Mumper RJ, Huang L. Combinational delivery of c-myc siRNA and nucleoside analogs in a single, synthetic nanocarrier for targeted cancer therapy. Biomaterials. 2013;34(33):8459–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Das M, Shen L, Liu Q, Goodwin TJ, Huang L. Nanoparticle delivery of RIG-I agonist enables effective and safe adjuvant therapy in pancreatic cancer. Mol Ther. 2019;27(3):507–17.

    CAS  PubMed  Google Scholar 

  23. Satterlee AB, Huang L. Current and future theranostic applications of the lipid-calcium-phosphate nanoparticle platform. Theranostics. 2016;6(7):918–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Westphalen CB, Olive KP. Genetically engineered mouse models of pancreatic cancer. Cancer J. 2012;18(6):502–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Clark CE, Beatty GL, Vonderheide RH. Immunosurveillance of pancreatic adenocarcinoma: insights from genetically engineered mouse models of cancer. Cancer Lett. 2009;279(1):1–7.

    CAS  PubMed  Google Scholar 

  26. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007;67(19):9518–27.

    CAS  PubMed  Google Scholar 

  27. Zheng L. Immune defects in pancreatic cancer. Ann Pancreat Cancer. 2018;1.

  28. Liu Q, Zhu H, Liu Y, Musetti S, Huang L. BRAF peptide vaccine facilitates therapy of murine BRAF-mutant melanoma. Cancer Immunol Immunother. 2018;67(2):299–310.

    CAS  PubMed  Google Scholar 

  29. Das M, Huang L. Liposomal nanostructures for drug delivery in gastrointestinal cancers. J Pharmacol Exp Ther. 2019;370(3):647–56.

    CAS  PubMed  Google Scholar 

  30. Miao L, Li J, Liu Q, Feng R, Das M, Lin CM, et al. Transient and local expression of chemokine and immune checkpoint traps to treat pancreatic cancer. ACS Nano. 2017;11(9):8690–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Spear S, Candido JB, McDermott JR, Ghirelli C, Maniati E, Beers SA, et al. Discrepancies in the tumor microenvironment of spontaneous and orthotopic murine models of pancreatic cancer uncover a new immunostimulatory phenotype for B cells. Front Immunol. 2019;10:542.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu Y, Herndon JM, Sojka DK, Kim KW, Knolhoff BL, Zuo C, et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity. 2017;47(3):597.

    CAS  PubMed  Google Scholar 

  34. D'Costa Z, Jones K, Azad A, van Stiphout R, Lim SY, Gomes AL, et al. Gemcitabine-induced TIMP1 attenuates therapy response and promotes tumor growth and liver metastasis in pancreatic cancer. Cancer Res. 2017;77(21):5952–62.

    CAS  PubMed  Google Scholar 

  35. Deshmukh SK, Tyagi N, Khan MA, Srivastava SK, Al-Ghadhban A, Dugger K, et al. Gemcitabine treatment promotes immunosuppressive microenvironment in pancreatic tumors by supporting the infiltration, growth, and polarization of macrophages. Sci Rep. 2018;8(1):12000.

    PubMed  PubMed Central  Google Scholar 

  36. Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013;73(3):1128–41.

    CAS  PubMed  Google Scholar 

  37. Weizman N, Krelin Y, Shabtay-Orbach A, Amit M, Binenbaum Y, Wong RJ, et al. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene. 2014;33(29):3812–9.

    CAS  PubMed  Google Scholar 

  38. Kim MP, Shah AN, Parikh NU, Gallick GE. Gemcitabine resistance in pancreatic cancer cells is associated with increased expression of stem cell-like markers and a concomitant down-regulation of PTEN and activation of AKT. Pancreas. 2007;35(4):409.

    Google Scholar 

  39. Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD. Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol. 2009;9(7–8):900–9.

    CAS  PubMed  Google Scholar 

  40. Wang Z, Till B, Gao Q. Chemotherapeutic agent-mediated elimination of myeloid-derived suppressor cells. Oncoimmunology. 2017;6(7):e1331807.

    PubMed  PubMed Central  Google Scholar 

  41. Evans RA, Diamond MS, Rech AJ, Chao T, Richardson MW, Lin JH, et al. Lack of immunoediting in murine pancreatic cancer reversed with neoantigen. JCI Insight. 2016;1(14).

  42. Zhao X, Yang K, Zhao R, Ji T, Wang X, Yang X, et al. Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials. 2016;102:187–97.

    CAS  PubMed  Google Scholar 

  43. Hu K, Miao L, Goodwin TJ, Li J, Liu Q, Huang L. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano. 2017;11(5):4916–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Han X, Li Y, Xu Y, Zhao X, Zhang Y, Yang X, et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem. Nat Commun. 2018;9(1):3390.

    PubMed  PubMed Central  Google Scholar 

  45. Kuramitsu Y, Wang Y, Kitagawa T, Tokuda K, Akada J, Tokunaga M, et al. High-mobility group box 1 and mitogen-activated protein kinase activated protein kinase-2 are up-regulated in gemcitabine-resistant pancreatic cancer cells. Anticancer Res. 2015;35(7):3861–5.

    CAS  PubMed  Google Scholar 

  46. Zheng C, Jiao X, Jiang Y, Sun S. ERK1/2 activity contributes to gemcitabine resistance in pancreatic cancer cells. J Int Med Res. 2013;41(2):300–6.

    CAS  PubMed  Google Scholar 

  47. Wallez Y, Dunlop CR, Johnson TI, Koh SB, Fornari C, Yates JWT, et al. The ATR inhibitor AZD6738 synergizes with gemcitabine in vitro and in vivo to induce pancreatic ductal adenocarcinoma regression. Mol Cancer Ther. 2018;17(8):1670–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao X, Wang X, Sun W, Cheng K, Qin H, Han X, et al. Precision design of nanomedicines to restore gemcitabine chemosensitivity for personalized pancreatic ductal adenocarcinoma treatment. Biomaterials. 2018;158:44–55.

    CAS  PubMed  Google Scholar 

  49. Zhao X, Li F, Li Y, Wang H, Ren H, Chen J, et al. Co-delivery of HIF1alpha siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials. 2015;46:13–25.

    CAS  PubMed  Google Scholar 

  50. Haynes MT, Huang L. Maximizing the supported bilayer phenomenon: liposomes comprised exclusively of PEGylated phospholipids for enhanced systemic and lymphatic delivery. ACS Appl Mater Interfaces. 2016;8(37):24361–7.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by National Institute of Health (NIH) grant CA198999, from National Cancer Institute (NCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leaf Huang.

Ethics declarations

Conflict of Interest

L.H. is a consultant for PDS Biotechnology, Samyang Biopharmaceutical, Stemirna, and Beijing Inno Medicine.

Human and animal rights and informed consent

All animal experiments were conducted in compliance with regulations of the University of North Carolina at Chapel Hill Institutional Animal Care and Use Committee (IACUC).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, M., Li, J., Bao, M. et al. Nano-delivery of Gemcitabine Derivative as a Therapeutic Strategy in a Desmoplastic KRAS Mutant Pancreatic Cancer. AAPS J 22, 88 (2020). https://doi.org/10.1208/s12248-020-00467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-00467-8

KEY WORDS

Navigation