Skip to main content

Advertisement

Log in

The EP3 Receptor/Gz Signaling Axis as a Therapeutic Target for Diabetes and Cardiovascular Disease

  • Review Article
  • Theme: Heterotrimeric G Protein-based Drug Development: Beyond Simple Receptor Ligands
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Cardiovascular disease is a common co-morbidity found with obesity-linked type 2 diabetes. Current pharmaceuticals for these two diseases treat each of them separately. Yet, diabetes and cardiovascular disease share molecular signaling pathways that are increasingly being understood to contribute to disease pathophysiology, particularly in pre-clinical models. This review will focus on one such signaling pathway: that mediated by the G protein-coupled receptor, Prostaglandin E2 Receptor 3 (EP3), and its associated G protein in the insulin-secreting beta-cell and potentially the platelet, Gz. The EP3/Gz signaling axis may hold promise as a dual target for type 2 diabetes and cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention. National diabetes statistics report: estimates of diabetes and its burden in the United States, 2014. Atlanta, GA: US Department of Health and Human Services; 2014.

  2. American Diabetes Association. Economic costs of diabetes in the U.S. in 2012. Diabetes Care. 2013;36(4):1033–46.

    Article  PubMed Central  Google Scholar 

  3. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34(Suppl 1):S62–9.

    Article  PubMed Central  Google Scholar 

  4. Liston A, Todd JA, Lagou V. Beta-cell fragility as a common underlying risk factor in type 1 and type 2 diabetes. Trends Mol Med. 2017 20.

  5. Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D. Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care. 2012;35(11):2402–11.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421–31.

    Article  CAS  PubMed  Google Scholar 

  7. Triplitt C. Improving treatment success rates for type 2 diabetes: recommendations for a changing environment. Am J Manag Care. 2010;16(7 Suppl):S195–200.

    PubMed  Google Scholar 

  8. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2016.

  9. Reimann F, Gribble FM. G protein-coupled receptors as new therapeutic targets for type 2 diabetes. Diabetologia. 2016;59(2):229–33.

    Article  CAS  PubMed  Google Scholar 

  10. Trujillo JM, Nuffer W. GLP-1 receptor agonists for type 2 diabetes mellitus: recent developments and emerging agents. Pharmacotherapy. 2014;34(11):1174–86.

    Article  CAS  PubMed  Google Scholar 

  11. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016 10;375(19):1834–44.

    Article  CAS  PubMed  Google Scholar 

  12. Kumarathurai P, Anholm C, Larsen BS, Olsen RH, Madsbad S, Kristiansen O, et al. Effects of Liraglutide on heart rate and heart rate variability: a randomized, double-blind, placebo-controlled crossover study. Diabetes Care. 2017;40(1):117–24.

    Article  PubMed  Google Scholar 

  13. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prasad-Reddy L, Isaacs D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs in context. 2015;4:212283.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kimple ME, Neuman JC, Linnemann AK, Casey PJ. Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes. Exp Mol Med. 2014;46:e102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robertson RP, Gavareski DJ, Porte D Jr, Bierman EL. Inhibition of in vivo insulin secretion by prostaglandin E1. J Clin Invest. 1974;54(2):310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robertson RP, Tsai P, Little SA, Zhang HJ, Walseth TF. Receptor-mediated adenylate cyclase-coupled mechanism for PGE2 inhibition of insulin secretion in HIT cells. Diabetes. 1987;36(9):1047–53.

    Article  CAS  PubMed  Google Scholar 

  18. Seaquist ER, Walseth TF, Nelson DM, Robertson RP. Pertussis toxin-sensitive G protein mediation of PGE2 inhibition of cAMP metabolism and phasic glucose-induced insulin secretion in HIT cells. Diabetes. 1989;38(11):1439–45.

    Article  CAS  PubMed  Google Scholar 

  19. Tran PO, Gleason CE, Robertson RP. Inhibition of interleukin-1beta-induced COX-2 and EP3 gene expression by sodium salicylate enhances pancreatic islet beta-cell function. Diabetes. 2002;51(6):1772–8.

    Article  CAS  PubMed  Google Scholar 

  20. Xu J, Rajaratnam R. Cardiovascular safety of non-insulin pharmacotherapy for type 2 diabetes. Cardiovasc Diabetol. 2017;16(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Proks P, Reimann F, Green N, Gribble F, Ashcroft F. Sulfonylurea stimulation of insulin secretion. Diabetes. 2002;51(Suppl 3):S368–76.

    Article  CAS  PubMed  Google Scholar 

  22. Principalli MA, Dupuis JP, Moreau CJ, Vivaudou M, Revilloud J. Kir6.2 activation by sulfonylurea receptors: a different mechanism of action for SUR1 and SUR2A subunits via the same residues. Physiological reports. 2015 Sep;3(9).

  23. Eriksson JW, Bodegard J, Nathanson D, Thuresson M, Nystrom T, Norhammar A. Sulphonylurea compared to DPP-4 inhibitors in combination with metformin carries increased risk of severe hypoglycemia, cardiovascular events, and all-cause mortality. Diabetes Res Clin Pract. 2016;117:39–47.

    Article  CAS  PubMed  Google Scholar 

  24. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.

    Article  CAS  PubMed  Google Scholar 

  25. D’Alessio D. Is GLP-1 a hormone: whether and when? J Diabetes Investig. 2016;7(Suppl 1):50–5.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Raz I, Hanefeld M, Xu L, Caria C, Williams-Herman D, Khatami H. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia. 2006;49(11):2564–71.

    Article  CAS  PubMed  Google Scholar 

  27. Aschner P, Kipnes MS, Lunceford JK, Sanchez M, Mickel C, Williams-Herman DE. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care. 2006;29(12):2632–7.

    Article  CAS  PubMed  Google Scholar 

  28. Nonaka K, Kakikawa T, Sato A, Okuyama K, Fujimoto G, Kato N, et al. Efficacy and safety of sitagliptin monotherapy in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract. 2008;79(2):291–8.

    Article  CAS  PubMed  Google Scholar 

  29. Drucker DJ. Glucagon-like peptide-1 and the islet beta-cell: augmentation of cell proliferation and inhibition of apoptosis. Endocrinology. 2003;144(12):5145–8.

    Article  CAS  PubMed  Google Scholar 

  30. Linnemann AK, Neuman JC, Battiola TJ, Wisinski JA, Kimple ME, Davis DB. Glucagon-like peptide-1 regulates cholecystokinin production in beta-cells to protect from apoptosis. Mol Endocrinol. 2015;29(7):978–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. MacDonald PE, El-Kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes. 2002;51(Suppl 3):S434–42.

    Article  CAS  PubMed  Google Scholar 

  32. Seino S, Shibasaki T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev. 2005;85(4):1303–42.

    Article  CAS  PubMed  Google Scholar 

  33. Seino S, Takahashi H, Fujimoto W, Shibasaki T. Roles of cAMP signalling in insulin granule exocytosis. Diabetes Obes Metab. 2009;11(Suppl 4):180–8.

    Article  CAS  PubMed  Google Scholar 

  34. Sonoda N, Imamura T, Yoshizaki T, Babendure JL, Lu JC, Olefsky JM. Beta-arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic beta cells. Proc Natl Acad Sci U S A. 2008;105(18):6614–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Apostolopoulos V, de Courten MP, Stojanovska L, Blatch GL, Tangalakis K, de Courten B. The complex immunological and inflammatory network of adipose tissue in obesity. Mol Nutr Food Res. 2015.

  36. Khodabandeloo H, Gorgani-Firuzjaee S, Panahi S, Meshkani R. Molecular and cellular mechanisms linking inflammation to insulin resistance and beta-cell dysfunction. Translational research: the journal of laboratory and clinical medicine. 2015.

  37. Divella R, De Luca R, Abbate I, Naglieri E, Daniele A. Obesity and cancer: the role of adipose tissue and adipo-cytokines-induced chronic inflammation. J Cancer. 2016;7(15):2346–59.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gunasekaran MK, Virama-Latchoumy AL, Girard AC, Planesse C, Guerin-Dubourg A, Ottosson L, et al. TLR4-dependant pro-inflammatory effects of HMGB1 on human adipocyte. Adipocyte. 2016;5(4):384–8.

    Article  CAS  PubMed  Google Scholar 

  39. Satoh M, Iwabuchi K. Communication between natural killer T cells and adipocytes in obesity. Adipocyte. 2016;5(4):389–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mito N, Hosoda T, Kato C, Sato K. Change of cytokine balance in diet-induced obese mice. Metabolism. 2000;49(10):1295–300.

    Article  CAS  PubMed  Google Scholar 

  41. Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003;112(12):1785–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mancuso P. The role of adipokines in chronic inflammation. ImmunoTargets Ther. 2016;5:47–56.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nandipati KC, Subramanian S, Agrawal DK. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem 2016 21.

  44. Bluher M. Adipose tissue inflammation: a cause or consequence of obesity-related insulin resistance? Clin Sci. 2016;130(18):1603–14.

    Article  PubMed  Google Scholar 

  45. Verma S, Hussain ME. Obesity and diabetes: an update. Diabetes Metab Syndr 2016.

  46. Kim OK, Jun W, Lee J. Mechanism of ER stress and inflammation for hepatic insulin resistance in obesity. Ann Nutr Metab. 2015;67(4):218–27.

    Article  CAS  PubMed  Google Scholar 

  47. Duarte N, Coelho IC, Patarrao RS, Almeida JI, Penha-Goncalves C, Macedo MP. How inflammation impinges on NAFLD: a role for Kupffer cells. Biomed Res Int. 2015;2015:984578.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ceddia RP, Lee D, Maulis MF, Carboneau BA, Threadgill DW, Poffenberger G, et al. The PGE2 EP3 receptor regulates diet-induced adiposity in male mice. Endocrinology. 2016;157(1):220–32.

    Article  CAS  PubMed  Google Scholar 

  49. Garcia-Alonso V, Titos E, Alcaraz-Quiles J, Rius B, Lopategi A, Lopez-Vicario C, et al. Prostaglandin E2 exerts multiple regulatory actions on human obese adipose tissue remodeling, inflammation, adaptive thermogenesis and lipolysis. PloS one. 2016;11(4):e0153751.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chan PC, Hsiao FC, Chang HM, Wabitsch M, Hsieh PS. Importance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance. FASEB J. 2016;30(6):2282–97.

    Article  CAS  PubMed  Google Scholar 

  51. Hu X, Cifarelli V, Sun S, Kuda O, Abumrad NA, Su X. Major role of adipocyte prostaglandin E2 in lipolysis-induced macrophage recruitment. J Lipid Res. 2016;57(4):663–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Luan B, Yoon YS, Le Lay J, Kaestner KH, Hedrick S, Montminy M. CREB pathway links PGE2 signaling with macrophage polarization. Proc Natl Acad Sci U S A. 2015;112(51):15642–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Garcia-Alonso V, Claria J. Prostaglandin E2 signals white-to-brown adipogenic differentiation. Adipocyte. 2014;3(4):290–6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kimple ME, Keller MP, Rabaglia MR, Pasker RL, Neuman JC, Truchan NA, et al. Prostaglandin E2 receptor, EP3, is induced in diabetic islets and negatively regulates glucose- and hormone-stimulated insulin secretion. Diabetes. 2013;62(6):1904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu H, Fu JL, Miao YF, Wang CJ, Han QF, Li S, et al. Prostaglandin E2 receptor EP3 regulates both adipogenesis and lipolysis in mouse white adipose tissue. J Mol Cell Biol. 2016;8(6):518–29.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Seaquist ER, Neal AR, Shoger KD, Walseth TF, Robertson RP. G-proteins and hormonal inhibition of insulin secretion from HIT-T15 cells and isolated rat islets. Diabetes. 1992;41(11):1390–9.

    Article  CAS  PubMed  Google Scholar 

  57. Casey PJ, Fong HK, Simon MI, Gilman AG. Gz, a guanine nucleotide-binding protein with unique biochemical properties. J Biol Chem. 1990;265(4):2383–90.

    CAS  PubMed  Google Scholar 

  58. Kimple ME, Nixon AB, Kelly P, Bailey CL, Young KH, Fields TA, et al. A role for G(z) in pancreatic islet beta-cell biology. J Biol Chem. 2005;280(36):31708–13.

    Article  CAS  PubMed  Google Scholar 

  59. Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S. Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol. 1997;122(2):217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kimple ME, Moss JB, Brar HK, Rosa TC, Truchan NA, Pasker RL, et al. Deletion of GalphaZ protein protects against diet-induced glucose intolerance via expansion of beta-cell mass. J Biol Chem. 2012;287(24):20344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Metz SA, Robertson RP, Fujimoto WY. Inhibition of prostaglandin E synthesis augments glucose-induced insulin secretion is cultured pancreas. Diabetes. 1981;30(7):551–7.

    Article  CAS  PubMed  Google Scholar 

  62. Brill AL, Wisinski JA, Cadena MT, Thompson MF, Fenske RJ, Brar HK, et al. Synergy between Galphaz deficiency and GLP-1 analog treatment in preserving functional beta-cell mass in experimental diabetes. Mol Endocrinol. 2016;30(5):543–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sanchez-Alavez M, Klein I, Brownell SE, Tabarean IV, Davis CN, Conti B, et al. Night eating and obesity in the EP3R-deficient mouse. Proc Natl Acad Sci U S A. 2007;104(8):3009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Borglum JD, Pedersen SB, Ailhaud G, Negrel R, Richelsen B. Differential expression of prostaglandin receptor mRNAs during adipose cell differentiation. Prostaglandins Other Lipid Mediat. 1999;57(5–6):305–17.

    Article  CAS  PubMed  Google Scholar 

  65. Wolf G. Adipose-specific phospholipase as regulator of adiposity. Nutr Rev. 2009;67(9):551–4.

    Article  PubMed  Google Scholar 

  66. Woulfe D, Jiang H, Mortensen R, Yang J, Brass LF. Activation of Rap1B by G(i) family members in platelets. J Biol Chem. 2002;277(26):23382–90.

    Article  CAS  PubMed  Google Scholar 

  67. Gagnon AW, Manning DR, Catani L, Gewirtz A, Poncz M, Brass LF. Identification of Gz alpha as a pertussis toxin-insensitive G protein in human platelets and megakaryocytes. Blood. 1991;78(5):1247–53.

    CAS  PubMed  Google Scholar 

  68. Williams AG, Woolkalis MJ, Poncz M, Manning DR, Gewirtz AM, Brass LF. Identification of the pertussis toxin-sensitive G proteins in platelets, megakaryocytes, and human erythroleukemia cells. Blood. 1990;76(4):721–30.

    CAS  PubMed  Google Scholar 

  69. Yang J, Wu J, Kowalska MA, Dalvi A, Prevost N, O’Brien PJ, et al. Loss of signaling through the G protein, Gz, results in abnormal platelet activation and altered responses to psychoactive drugs. Proc Natl Acad Sci U S A. 2000;97(18):9984–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jantzen HM, Milstone DS, Gousset L, Conley PB, Mortensen RM. Impaired activation of murine platelets lacking G alpha(i2). J Clin Invest. 2001;108(3):477–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang J, Wu J, Jiang H, Mortensen R, Austin S, Manning DR, et al. Signaling through Gi family members in platelets. Redundancy and specificity in the regulation of adenylyl cyclase and other effectors. J Biol Chem. 2002;277(48):46035–42.

    Article  CAS  PubMed  Google Scholar 

  72. Stefanini L, Paul DS, Robledo RF, Chan ER, Getz TM, Campbell RA, et al. RASA3 is a critical inhibitor of RAP1-dependent platelet activation. J Clin Invest. 2015;125(4):1419–32.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Colwell JA, Halushka PV, Sarji K, Levine J, Sagel J, Nair RM. Altered platelet function in diabetes mellitus. Diabetes. 1976;25(2 SUPPL):826–31.

    CAS  PubMed  Google Scholar 

  74. Axelrod L, Cornelius P, Kieffer JD. Plasma eicosanoid levels in rats with nonketotic diabetes mellitus: effect of severity. Metab Clin Exp. 1986;35(4):328–32.

    Article  CAS  PubMed  Google Scholar 

  75. Axelrod L, Shulman GI, Blackshear PJ, Bornstein W, Roussell AM, Aoki TT. Plasma level of 13,14-dihydro-15-keto-PGE2 in patients with diabetic ketoacidosis and in normal fasting subjects. Diabetes. 1986;35(9):1004–10.

    Article  CAS  PubMed  Google Scholar 

  76. McRae JR, Day RP, Metz SA, Halter JB, Ensinck JW, Robertson RP. Prostaglandin E2 metabolite levels during diabetic ketoacidosis. Diabetes. 1985;34(8):761–6.

    Article  CAS  PubMed  Google Scholar 

  77. Chase HP, Williams RL, Dupont J. Increased prostaglandin synthesis in childhood diabetes mellitus. J Pediatr. 1979;94(2):185–9.

    Article  CAS  PubMed  Google Scholar 

  78. Abbate R, Pinto S, Panetta A, Favilla S, Prisco D, Paniccia R, et al. Platelet synthesis of cyclooxygenase and lipoxygenase products in type I and type II diabetes. Prostaglandins Leukot Essent Fat Acids. 1988;31(1):9–15.

    Article  CAS  Google Scholar 

  79. Halushka PV, Lurie D, Colwell JA. Increased synthesis of prostaglandin-E-like material by platelets from patients with diabetes mellitus. N Engl J Med. 1977;297(24):1306–10.

    Article  CAS  PubMed  Google Scholar 

  80. Fabre JE, Nguyen M, Athirakul K, Coggins K, McNeish JD, Austin S, et al. Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation. J Clin Invest. 2001;107(5):603–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Iyu D, Glenn JR, White AE, Johnson AJ, Fox SC, Heptinstall S. The role of prostanoid receptors in mediating the effects of PGE(2) on human platelet function. Platelets. 2010;21(5):329–42.

    Article  CAS  PubMed  Google Scholar 

  82. Tilly P, Charles AL, Ludwig S, Slimani F, Gross S, Meilhac O, et al. Blocking the EP3 receptor for PGE2 with DG-041 decreases thrombosis without impairing haemostatic competence. Cardiovasc Res. 2014;

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle E. Kimple.

Additional information

Guest Editor: Shelley Hooks

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaid, M.D., Wisinski, J.A. & Kimple, M.E. The EP3 Receptor/Gz Signaling Axis as a Therapeutic Target for Diabetes and Cardiovascular Disease. AAPS J 19, 1276–1283 (2017). https://doi.org/10.1208/s12248-017-0097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0097-1

KEY WORDS

Navigation